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FOREWORD

This work represents the Interim-Report on the "Photometric

Measurements of Simulated Lunar Surfaces" for the National

Aeronautics and Space Administration, Manned Spacecraft Center,

Houston, Texas, under Contract NAS9-3182 to the Grumman Aircraft

Engineering Corporation, Bethpage, N.Y.

The contract authorized a ten-month study commencing

July 28, 1964, and delineated work in experimental investigations

and interpretations of the lunar photometric data. The study was

conducted under the cognizance of the Advanced Spacecraft Tech-

nology Division,with Mr. Robert L. Jones of the Lunar Surface

Technology Branch serving as Technical Representative.



ABSTRACT

The primary purpose of these investigations is to infer cer-

tain physical properties of the lunar surface from terrestrial

specimens that reproduce the lunation curves of the moon at repre-

sentative longitudes. An improved photometer capable of examining

3-inch diameter areas at all phase angles i including 0°i has been

developed and used to measure the brightness versus phase relation-

ship of "naturali" "artificial3" and "controlled" models.

Good photometric agreement with the moon at 0 °, 30 ° and

60 ° longitudes is obtained with "natural" specimens including

fine dust, coarse volcanic cinders, furnace slags, sea corals,

metallic meteorites, etc. A low albedo and a high porosity are

properties that are most common to these specimens which, other-

wise, differ widely from one another in composition, strength,

consistency, depth, grain size or actual roughness, etc. Con-

flicting statements made in the past regarding the nature of

the lunar surface on the basis of similar experiments can be

avoided if test results are interpreted in terms of photometri-

cally relevant properties rather than in terms of natural speci-

mens that are photometrically analogous to the moon.

Contrived models developed and investigated for the purpose

of identifying "relevant" properties confirm the importance of

low albedo and high porosity (rather than grain size or composi-

tion) a_ key photometric properties and suggest that the surface

of the _<_:_r_is nearly uniformly covered with an i'underdense"

micropovo_:_ !,_ot,_ia! baying innumerable_ randoml sharp edges ard

overhanging members. The models promise further insight and

quantitative data on the photometric and geometric relationship

of backscattering surfaces and also account for some recently

observed photometric peculiarities of the moon.

Preliminary quantitative estimates of some physical proper-

ties of the lunar surface that can be directly inferred from its

photometry are given and a number of useful areas of further in-

quiry are recommended in order to confirm or refine these esti-

mates and utilize the information in interpreting the less ex-

plored regions of the lunar data. __j
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tNTRODUCTI, ON

This report gives a detailed account of all work performed

under NASA Contract No. NAS9-3182 to date. It includes most of

the material submitted in two previous progress reports (Refs. 13

and 14)* and represents the final report on the "Photometric

Measurements of Simulated Lunar Surface" performed to date.

Recent interest in lunar landing and exploration has stimu-

lated a great deal of earth-based research aimed at interpreting

lunar observational data in terms of the engineering properties

of the lunar surface and environment. Currently, the lunar

photometric data are being utilized in studies of lighting and

visibility conditions on the moon as well as in investigating the

nature of its surface. This investigation is oriented more

toward the latter inquiry. The facilities, techniques, models,

and knowledge developed in this connection may be equally useful

to those interested in simulating lunar visibility conditions.

This work was largely motivated by the notion that the

scarcity of physical and theoretical models that obey the reflec-

tion laws of the moon could b_ due in part to the limitations of

instruments used in "model-matching" experiments of this nature,

and that improvements or modifications in test equipment, testing

techniques: specimen preparation_ and methods of analysis_ could

render photometric test results more meaningful. It should be noted

tl_ the _l_r1_c=_ .,: _i_s qtudv is not merely to proliferate the num-

ber -'_ _........:_........."........_io _ _h_ ,_._m sake_ but to understand

_he physics of the photometric phenomena as it applies to the

':_oon and to improve our knowledge o£ the l_nar surface insofar

as such knowledge can be obta__ned from the lunar photometric

data. Additional inferences, beyond the scope of this study, can

be made from other portions of the lunar sensor data, either to

confirm or tn complement the photometric findings.

*References are listed at the end of this report in alphabetical

order of author's name and are numbered accordingly.

i



The experiments are divided into three parts,designated
Phase I, Phase II, and Phase III.

Phase I consists of brightness vs. phase angle measurements
at 0°, 30° , and 60 ° viewing angles of 21 "natural" specimens;
these specimens were selected on the basis of their promising
__I_ ..... ,.," _ .. _ _ _. 0

,,'_ I...ptLuLU_=LL_ _LU_=LL_=_ 0 viewing =LL_= u=,_=_-,_.,-,_,._,-,,._....e

preliminary Grumman-funded experiments (Ref. ii). The purpose of

this phase is to establish as broad a match as possible with the

known photometric properties of the moon.

The purpose of the succeeding phases is to evaluate the

effect of albedo, relative surface roughness, porosity, and grain

size on the photometric function by varying each variable more or

less independently of the others, and, possibly, to formulate

quantitative relationships between the physical and photometric

properties of the surfaces. Although Phases II and III

pursue similar objectives, they differ from one another by the

techniques used in preparing the test models and the methods of

analysis.

The three phases are essentially interrelated, but they are

treated as complete entities so that each section may be read inde-

pendently. Each contains a statement of purpose, detailed descrip-
tions of test specimens and experiments, and discussions of test re-

suits and their significances. They are preceded by a general review

of past efforts in the field of lunar photometry and a detailed

description of the Grumman Photometric Analyze r used in our

experiments. They are followed by tentative conclusions regard -

ing the nature of the lunar surface, as suggested by the lunar

photometric data, and a number of recommendations for further

earth-based research in this and other related fields.

The primary purpose of these investigations is to contribute

to the definition of an "engineering" lunar surface model that
is consistent with the available lunar observational data and the know

environmental characteristics of the moon. The search for such

a model may be conveniently started by establishing a large

variety of photometric models and then narrowing these down in

terms of the polarimetric, radiothermal, dielectric, and other

known properties of the lunar surface. The validity of these

models may also be assessed independently under simulated lunar

environmental conditions. Earth-based investigation of this

nature could assist or complement, in a number of ways, the mis-

sion of unmanned lunar probes paving the way for manned landing

and in identifying problem areas in engineering operations On
the moon.

2



A BRIEF REVIEW OF LUNAR PHOTOMETRY.

The term "photometry" as used in the study of nonincandescent

bodies_ such as the moon and the planetsj deals with the reflecting

properties of the surface of these bodies (mostly in the visible part

of the electromagnetic spectrum) as a function of "phase angle_;'

the angle between sunlight incident on the moon and the emergen't

ray as seen by an observer on earth. By measuring the variation of

brightness of the moon under varying conditions of illumination_ or

phase angle_ one is able to obtain information about the detailed

structure of its surface that cannot be obtained by visual tele-

scopic means.

Lunar Photometric studies may be conveniently divi_ed into

the following three main areas: i) direct measurements of

the albedo az_d the change in brightness of various areas of tl_e

moon throughout a lunation, 2) theoretical formulations of the

reflection laws of the moon_ and 3) experimental investigations

of terrestrial specimens in an attempt to match the measured lunar

data and to in_er certain physical properties of the lunar surface

These areas will be reviewed critically as a background to and

justification for the present work. More detailed reviews of these

areas may be found in the literature; in this respect the works

of van Diggelen and of Pearse are the most extensive and up-to-

date.

Lunar Observations

The earliest photometric measurements of the moon date back

to 1847 when Herschel studied the variation of the integrated bright-

ness of the moon over the lunar cycle. The first studies of the

change in brightness of selected features on the moon were made by

Wislezinus in 1893-95 by means of a stellar photometer. This work

was refined later by Wirtz in 1915 and by Barabashev in 1918.

These workers demonstrated that the maximum brightness of any re-

gion on the moon occurred approximately at full moon. Barabashev

explained this result as evidence that the lunar surface is ex-

tremely rough and porous_ thus confirming an earlier prediction

made by Galileo who in the 17th Century (without the benefit of

actual measurements) had correctly attributed the absence of limb

darkening to the roughness of the lunar surface. The essential

validity of Barabashev's conclusions for the entire visible surface

of the moon was demonstrated by Markov in 1923 and subsequently by

Fedoretz and van Diggelen.
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More recently, lunar photometric measurements have been made

by Minnaert and Fedoretz using the photographic technique. This

technique consists of measuring (by means of a microphotometer)

the density of lunar photographic plates taken at various phase

angles. From the analysis of 172 regions distributed almost

uniformly over the entire surface of the moon, Fedoretz construc-
ted ___I__ • ^L=u_== in wh_uLL the =LL_=_--~I^ _f "___L_=_L_=,^"_.... the _"_= of emergence

and the relative brightness were given for each feature and for

each lunar phase angle. Orlova constructed similar tables for

two groups of lunar areas, the maria and the continents. These

tables were based on the photographic studies of Fedoretz and on

the visual studies of Sharanov. Typical brightness versus phase

curves taken from the Orlova tables, representing averages for

lunar maria and continents at 0 °, 30 °, and 60 ° longitudes,

are shown in Figs. la, b, and c respectively.

A careful investigation of the photometric properties of

38 crater floors on the moonwas made by van Diggelen who analyzed

photographs that were exposed in 1946 by Minnaert. As can be seen

in Fig. la, b, and c, van Diggelen's results agree reasonably

well with those of Orlova, which as we have noted were based on

lunar data originally measured by Fedoretz and Sharanov. The

result_ of van Diggelen also confirmed Barabashev'_ _o_Lclusion

regarding the maximum brightness occurring _t full moon, irrespective

of the location of the crater on the lunar disc. However, several

rayed craters were found with maximum brightness occurring slightly

after zero phase as shown in Fig. 2. No reasonable explanation has

yet been offered for this anomaly.

Photometrically, the moon appears to be remarkably uniform.

The brightness of different parts of the lunar surface, maria,

mountains, and crater floors, approximately changes according to

the same relation -- namely that the brightness increases rapidly

near full moon and decreases rapidly after full moon, regardless of

location on the lunar disk. The physical homogenity of the lunar

surface suggested by the photometric data seems to be confirmed

by radiothermal data as well as by Ranger Vll and VIII photographs,

which reveal maria surfaces essentially similar in appearance

although some 800 miles apart. After albedo differences of in-

dividual objects have been taken into account by normalizing the

lunation curves, it is found that the photometric function is almost

independent of latitude and dependent only upon longitude. Hence,

in attempting to match the lunation curves of the moon with those

of laboratory specimens, it is important to examine these speci-

mens under a wide range of viewing positions in the plane af
vision.
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The moon exhibits also minor variations in albedo or bright-
ness. The term albedo as used in this work implies "directional"
albedo, and is defined as the ratio of the brightness of an object
to that of an "ideal white diffused reflector" under the same condi-
tions of illumination. Local variations in lunar albedos seem to be due
to differences in material rather than changes in viewing geometry.
According to data reported by Sytinskaya, the albedo for maria and
continents_ is almost constant across the lunar disk ranging from
.064 to .069 for the maria and from .096 to .115 for the
continents. Locally_ a minimum of .04 has been found for the
bottom of certain craters_ and a maximum of .18 for rayed craters.

Gehrels et al. have reported very rec=,t" y new lunar photo-
metric and albedo measurements for variouS imlar regi, ns, including
some rayed craters. The observations were made be_re an eclipse
(period of 1956-59) in order to determine albedo a.ld the change
in brightness at rarely observed small phase angles. Measure-
ments down to 0.8 ° phase were made. The results, some of which
are shown in Fig. 3, differ from previous observations in three
major respects. First, the lunation curves are characterized by

mnre pronounced surge of brightness close to zero phase angle
than th_ ,_a_. i_°_elen and Orlova curves, Fig. i. Second, the
albedo measu_-mL....:.:_ J_dicate an increa_i_,., _cend with wavelength
ranging from 0.36 _,, . .;i_i_ _,_ expected, but the_e measure-
ments are generally higher t_an p_iu,_iy reported. The esti-
mated average albedo at zero phase (extrapolated from measurements
at 5 ° to 0.8 ° phase angles) gives 0.2 for the normal albedo
at 0 _' _,_J_ _n.is average _I,,_ high and low albedo
measurements ta_ i_ +_ - --_,,e 1955 59 and Iq63-64 periods respectively.

Third, the rayed craters, Tycho and Copernicus in Fig. 3, unlike

those of van Diggelen in Fig. 2, do not show any anomalous phase

shift of maximum brightness at opposition.

Available observational data in lunar photometry are taken

in the full width of the visible spectrum. No complete bright-

ness vs. phase data at discrete wavelength in the visible or near

infrared part of the spectrum are known to exist.

Theoretical Investigations

Various analytical relationships of increasing complexity have

been derived during the last few decades in an attempt to formulate

a reflection law of the moon as a function of illumination geometry

(i.e., angle of incidence i, angle of emergence or viewing

angle E, phase angle _)_ albedo a_ and geometry p_

5



of the reflecting surface. These formmlas have evolved with the

successive introduction by various investigators of the parameters

i, E, a, and p into the photometric equation. The earlv at-

tempts were not very successful in accounting for the photo-

metric properties of the moon, largely because they ignored the

important surface geometry factor p, which has been recently

introduced by Hapke and which will be discussed later.

The simplest and oldest reflection law is that of Lambert

stating that the brightness of a surface is a function of its

albedo and cos i. This law does not account for the reflecting

properties of the moon, because a spherical surface obeying it

would have its brightest region at the normal to the incident light

and, unlike the moon, would be limb-dark.

The Lommel-Seeliger law takes into account the angle of emer-

gence or viewing angle E of the surface and expresses the bright-

ness as

a cos i

cos i + cos E

This law has the advantage of giving a uniformly bright surface

on a sphere at zero phase angle when i = E (assuming a collimated

light source) and correctly represents the appearance of a full

moon. However, at phase angles other than zero, when i is not

equal to E, it agrees very poorly with the lunar data. Neither

the Lambert nor the Lommel-Seeliger law satisfies the condition

that the brightness of all lunar areas reaches a maximum at full

moon.

A number of empirical brightness-phase relationships for the

moon have been. derived- by Schoenberg (Van de Hulst, 1957),

Fesenkov, and Opik. These investigators have improved upon the

Lambert and Lommel-Seeliger laws by introducing a function of the

phase angle. These formulas are discussed in detail by van Diggelen

and Pearse. Tschunkohas compared them with the lunar data. The

results, shown in Fig. 4, do not satisfactorily conform to the

lunar curves, especially at larger longitddes.

Van Diggelen tried to apply the calculations of Chandrasekhar

for the scattering of sunlight by a planet and found that this

method also fails to describe the lunar observations.



More recently Hapke utilized the Schoenberg Lon_nel-Seeliger

formula as a starting point and multiplied it by a factor which

he called the "retro-directive" function in order to account for

the "preferred direction" effect. This relationship may be repre-

sented conceptually as follows:

= _i, E) 7" f(_) " f (_ ' p)

Lommel-Seeliger
V

Schoenberg
• J

Hapke

The retro-directive function, f(_, p), as introduced by

Hapke, is a function only of the phase angle a and a factor p.

The latter essentially depends upon the porosity of the material.

Curves that fit the lunar data best are characterized, according

to Hapke, by p = 0.6, corresponding to a porosity of 85%, indi-

cating a model in which 15% of the volume is occupied by solid,

shadow-casting elements.

Byrne has compared the curve of the Hapke function for

= -40 ° with individual data points across the lunar disk ob-

tained by Fedoretz and Orlova. He found that the theoretical curve

shows good agreement with the moon between +50 ° longitude (near

the terminator) and -30 ° longitude, but deviates considerably

between -30 ° longitude and the sunlit limb at -90 ° longitude,

as shown in Fig. 5. Generally, however, Hapke's formula matches

the lunar brightness-phase curves better than other theoretical

and empirical relationships that have been proposed to date.

Experimental Investigations

Several attempts have been made to match the lunation curves

of the moon with those of terrestrial specimens commonly found in

nature and with artificial models consisting of controlled, geo-

metric shapes.

Barabashev in 1924 and Bennett in 1938 proposed that much of

the moon's surface is covered by random hemispheric pits. The

attempts failed to fit the observed lunation curves in the steep

portion near maximum brightness. Bennett then postulated deeper

pits in the form of half ellipsoids and found abetter though still



imperfect fit. Van Diggelen further improved upon this model by

intersper_ng the pits with ash covered level areas, but the agree-

ment with the lunar data was still unsatisfactory.

Lack of success with contrived models led to the search for

terrestrial materials that could duplicate the observed lunation

curves. A material that has received particular attention in this

respect is volcanic cinder;in view of the success that Lyot had in

matching it with the polarimetric curves of the moon. Unfortunately,

contradictory statements have been made by Barabashev and van Dig-

gelen regarding the photometric properties of this material.

After comparing the reflecting properties of numerous terres-

trial rocks, both in their natural and puiverized states, with the

observed values for the moon, Barabashev and Chekirda (1959) con-

cluded that the material forming the lunar surface does not resemble

a fused or primeval surface, but comes closest to a light (i.e.,

underdense) disrupted tuffaceous rock in a crushed condition, such

as "coarse-grained volcanic ash. " More recently, Barabashev and

Garazha (1962) investigated the effect of grain size on the photo-

metric signature and found that volcanic cinder with grain diame-

ter ranging from 2 to several millimeters fits the lunar data

best, as shown in Fig. 6. They concluded that the lunar surface

is covered with volcanic"ash_whose average diameter is unlikely to

be less than i mm.

Almost simultaneously with Barabashev, van Diggelen also in-

vestigated volcanic powders (mean particle diameter 0.i mm) which

he described as "Vesuvius sand 1830" and "Vesuvius ash 1906."

Even though these powders had albedos within range of lunar values,

the results, sho_n in Fig. 7, failed to match the brightness-phase

curves of the moon. However_ van Diggelen_ without investigating

the effects and interrelationship of grain size and porosity_ was

led to conclude that "from a photometric point of view 3 the lunar

surface is in no case to be described as a plane layer covered by

volcanic ashes" (Ref. 28).

Further investigations by van Diggelen of glass beads, loosely

packed stones, seeds, black carbon powder, etc. as possible lunar

photometric models were equally unsatisfactory. His numerous at-

tempts finally met with success when he tried a spongy form of

lichen, known as "Cladonia rangiferina," having a great number of

irregular cups, pits or clefts. The results, shown in Fig. 8, com-

pare very favorably with the curves of observed crater floors,

Fig. 9, except for minor deviations at large phase and viewing

angles.
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It has now become clear_ largely due to subsequent work by
Hapke, that the unusual backscattering qualities of lichen are
mostly due to its high porosity_ complex microstructure_ and in-
terconnected cavities. Porosity, rather than grain sizej may well
be the key to reconcile Barabashev's and van Diggelen's opposing
views on volcanic cinder as a lunar photometric model. Neither one
of these investigators seems to have appreciated the importance of poros-
ity on the lunar photometric functions. This point will be dis-
cussed later in this work when an experimental attempt is made to
resolve the apparent contradiction in terms of porosity rather
than grain size.

In view of the artificiality of the lichen as a lunar model_
Hapke built and studied a dust model Which Gold had originally
proposed as being more realistic in terms of lunar history and
environment. Hapke duplicated the lunation curves of the moon at
all viewing angles by a surface on which he loosely sprinkled
micron-size particles of low reflectivity. The results that he
obtained with silver chloride and copper oxide powders have been
duplicated by us and are shown in Figs. 14 and 15. Dust particles,
when sufficiently small, form_ on a microscopic scale2 complex
labyrinthine structures that have been appropriately described by
Hapke as "fairy castles." He explained that such a structure
traps most of the light reflected in all directions except in the
direction of incidence and accounts for the "backscattering" and
"opposition" effects exhibited by the moon regardless of the loca-
tion or geologic history of the observed area.

Hapke's "fairy castle" model is a marked improvement on the
Bennett-van Diggelen "pitted" model or Barabashev's "fragmented
tuff_" insofar as it postulates an "underdense" porous structure
necessary to trap the incoming light and to reflect it preferen-
tially in the direction of incidence. Such a structure also is
independently suggested by the rapid cooling curves of the moon.
Unfortunately, the photometric significance of this model has been
obscured by conclusions regarding the dusty nature of the lunar
surface. Such inferences could be premature_ since the photometric
function of a surface is primarily dependent upon the geometry of
its elements and not uniquely dependent upon the
actual size of and cohesion between those elements.

The contention that the "fairy castle" structure needed to
backscatter light_ as is done on the moon_ may not be peculiar to
dust alone_ has in part motivated the photometric investigations at
Grummmn. It was suspected that such structures could be possessed
(although on a larger scale) by hard_ highly porous_ "macro-rough"
volcanic cinders_ scoriae_ and slags_ which are just as likely to
exist on the moon as fine dust.
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The discovery of lunar photometric models, other than fine
dust, which meet Hapke's specifications, has been'hampered largely
by instrumental limitations. The photometer used by Hapke and his
predecessors was not capable of examining spots larger than about
a half inch in diameter. It is doubtful that the photometric func-
tion of such a small area could do justice to the complexity of a
rough .... _-^ other than _^ dust or _L ..... is ......._u_=u= I_. T_ " _l_a_ that _h_4. 4.££_ •

values obtained from lunar observations are averaged over surfaces

several orders of magnitude larger than those examined in the

laboratory. The actual size of lunar reliefs contributing to its

sharp backscatter may well exceed a few microns or even milimeters,

and a laboratory specimen having large scale irregularities may

be equally valid if it reproduces the lunar data. A large photo-

metric analyzer capable of "seeing" a representative number of

protrusions and cavities is necessary to assure a meaningful

match. Such a photometer, described in the next section, has been

developed at Grumman.
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_"EST EQUIPMENT

The photometric analyzer built at Grumman for the purpose of

viewing large areas is shown in Figs. i0 and ii. The manner in

which this device simulates the sun-moon-earth optical relationship

is illustrated in Figs. 12 and 13. The sun is simulated by a

collimated light source mounted on a counterbalanced rotating arm,

approxin_tely 8 feet from the sample. At the center of rotation,

the sample simulates a portion of the lunar surface; the table

on which it rests can be tilted to change the viewing angle. The

table can be adjusted vertically to assure that the light is always

beamed to the same part of the sample. The electronic photometer,

mounted on the ceiling, views the sample as a similar instrument

would view the moon from the earth. The phase angle of the

sun-moon-earth geometry can be set by rotating the sun source.

Two additional photometers at 30 ° and 60 ° viewing angles have

been mounted on the ceiling, not only for convenience, but also to

obviate the necessity of tilting the sample table and disturbing

particulate specimens.

Some of the unique capabilities of this photometric analyzer
are as follows:

• The ability to read at zero and near-zero phase

angles• This is accomplished by means of a "beam

splitter" which_ at phase angles other than zero

(or near zero), is replaced by a first-surface

mirror to assure a source of unp01arized light

to and from the sample• At small phase angles,

the polarization produced bv the beam splitter

is negligible for photometric purposes.

• To plot the photometric curve automatically as

the light source swings over the sample.

• To take polarimetric readings• This is accom-

plished by means of a rotating polarizing filter

(polaroid) mounted in front of the photometer.*

The polarimetric part of the photometer is described in greater

detail in Ref. 6.
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. To sample large areas. This capability assures

meaningful data from surfaces having large-scale

irregularities, i.e.• mm to cm. Presently,

3-inch diameter areas can be measured• This

capability could be expanded to 12 inches or more;

the limit is established by the physical dimen-

sions of the facility. Focused light may be

used in place of collimated light for very large,

less precise work.

The objective lenses for the photometers and sun source are

12-inch f/2.5 units.

The sun source and polarizer are motor driven and controlled

at a single panel, from which the selection of one of the three

photometers can also be made. The three photometers may be seen in

Fig. i0. Only the photometers with 0 ° and 60 ° viewing angles

are equipped with the polarimetric analyzer.

Crossed axes front surface mirrors are used with the sun source

to eliminate polarization bias in the light received by the speci-

men. At a zero degree phase angle• a beam splitter is substituted

for the second mirror•

The following features of the Grumman Photometric Analyzer assure

accurate and repeatable photometric measurements:

• The light is well collimated, allowing the

formation of sharp shadows• The angular size

of the sun (30 minutes of arc) is duplicated

inJthe collimated source, so that the shadow-

ing is realistic. The sun source is made

uniform by the use of diffuser disks•

• Considerable care is taken to minimize extrane-

ous scattered light that could seriously preju-

dic_ the results. The equipment is operated in

a darkened room•. Were the source modulated•

some low level illumination would be permissible,

but the scatter of modulated light from the source

itself would require close attention• In a

darkened room_ undesirable scatter can be observed

and eliminated.•

12



•

.

•

•

The illuminated portion of the sample is slightly

less than 4 inches indiameter. This is suffi-

ciently large to assure an integration of the

macrostructure of the coarsest specimens usedj

such as slag, volcanic cinder_ meteorites_ etc.

Each of the three photometers is equipped with a

field stop carefully and definitely limiting the

viewed area to a disk within the perimeter of

the il!_minated area. Viewing of the natural

boundaries or edges of the specimen is avoided.

The viewed area is carefully centered on the

axis of rotation of the sun source so that the

center of the illuminated disk does not shift appreciably

as the arm supporting the sun source is rotated•

Keeping the photometers static while rotating

the sun source permits the examination of par-

ticulate materials that remain undisturbed

throughout the test.

With the use of large receiver optics, the

light collection efficiency is high, and the

signal-to-noise ratio in the phototube output

is nigh. The use of a tungsten-iodine

lamp w_th _ high intensity, behind the diffu-

ser disk, also favors an excellent signal-to-

noise ratio. The recorder is operated

at a high gain to minlmize the servo error.

Some slight servo "jitter" of the recorder is

evident, but insufficient to impair its accuracy.

The multiplier phototube (931A)

increases the system gain.

The combination of the tungsten-iodine source

(operating in excess of 3000°K) and a blue-

sensitive S-4 phototube approxmates the

spectral response of lunar photographic photome-

try.

• The alignment of the sun source and the re-

ceivers (photometers) relative to the specimen

is carefully adjusted and periodically checked

by optical techniques• The performance of the

entire system is calibrated regularly by using

standard samples with stable, known characteris-

tics. The error of the data can be shown to be

less than two per cent for low albedo nmterials.
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TEST PROCEDURE

The initial step with all of the photometric tests, following

sample preparation_ is to position the specimen properly on its

stand. It is aligned in a manner t[_t permits all of the photometers

to view the same illuminated disk, never an edge of the specimen or

the stand itself. The sample, w_etiler it is a thin veneer of

powder of a thick rock specimen, is accommodated by raising or

lowering the stand so as always to position the upper surface

of the specimen at the same level.

With the sun source extinguished, the arm is rotated in a

totally dark room, thereby producing a horizontal trace on the

two-axis recorder, representing the dark current level. The opera-

tion is repeated with the sun source turned on, with the gain of

the photometer adjusted so that the output above the dark current

level is normalized to a standard reference point in the lunation

curve. The photometric curve is then taken with the front surface

metal mirrors through a complete rotation of the sun source.

The second mirror is then replaced by the beam splitter. The

curve then is completed through the previously eclipsed nine de-

grees of arc.

In succession, the 30 ° and 60 ° photometers are used to

plot the reflectivity of the undisturbed specimen. The mirrors

and the beam splitter are carefully cleaned at each removal or

replacement. Light reflected by the beam splitter to the wall

is absorbed by a drape of black flock cloth* tO prevent a secondary
reflection from this source.

The test curves are automatically plotted by the recorder as the

sun source is rotated throughout a full lunation. The sheet on

which the test curve is recorded contains a standard lunation

curve(of the moon) as described in the next section.

Albedo measurements at all viewing angles are made for all

specimens at 0 ° phase angle through the bean splitter. Since

albedo is the ratio of the brightness of the specimen and a

standard white diffuser, both measured through the beam splitter

under the same illumination_ no correction has to be made for

passage of light through the beam splitter.

Synthon, Inc., Cambridge, Mass.
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STANDARD LUNATION CURVES AND DATA PRESENTATTO_.N

The best known lunar photometric curves that are used today in

lunar visibility and model-matching studies are mostly based on the

extensive observations made in the late forties by Fedoretz at the

Kharkov Observatory and by Minnaert at the Yerkes Observatory.

Although these observations do not come as close to zero

phase as the more recent ones made by Gehrels, unlike the

Gehrels measurements, they contain a great number of points that

allow confident construction of brightness-phase curves for large

areas of the moon down to about 4 ° phase (roughly the time of

full moon).

Averages for a representative number of crater floors, maria,

and continents distributed widely over the lunar disk, have been

derived by Orlova and van Diggelen. These averages are shown as

brightness vs. phase curves in Figs. la_ b, and c for 0°j 30 °,

and 60 ° longitudes (or viewing angles). The Orlova and van Dig-

gelen curves, based on data by Fedoretz and Minnaert respectively_

are in fair agreement with one another and support the view ex-

pressed bymany authors that the moon is nearly, photometrically

homogeneous. The gray band enclosed by these curves may be con-

sidered as the data scatter for the entire lunar disk; it is

adopted as the lunar standard and is used as a basis for comparison

with all our test curves. For the sake of clarity_ the lines

delimiting the band are omitted in the figures containing the test

curves. Comparisonsof the actual lunar curves for maria or con-

tinents with some of the natural specimens showing the best fit

with the lunar data, are presented at the end of Phase I.

In pl0tting the curves in Fig. ij the individual albedo dif-

ferences of the crater floors, maria, and continents have been

eliminated by normalizing the brightness of each area to a

value of 1.00 at about 4 ° phase angle. This point represents

approximately the smallest phase angle at full moon in the Fedoretz-

Minnaert observations. The brightness values of the moon at smaller

phase angles are extrapolated beyond this point, and hence are unre-

liable. It was decided3 therefore_ to normalize the test curves at

this pointj rather than at 0° phase angle. I_ our photometric set-

upj this point corresponds to the position of the sun-source when _ the

fr_e of the beam splitter obscures the sample. Beyond this position

the beam splitter is used (between +4 ° and -4 ° phases), and the

actual plot is shown by the solid, "dipped" curve which peaks between

0.5 and 0.75 units. This peak represents the brightness of the

sample as seen through the beam splitter. The actual
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brightness of the sample near 0 ° phase (shown in dotted line) is

obtained by multiplying the "dipped" peak value by a factor of

1.66 which represents the correction for the attenuation of light

coming through the beam splitter.

Of course, the brightness of the moon at 0 ° phase, unlike

that of our test specimens, is not known, since this position of

the moon corresponds to total eclipse, but Gehrels' L=_=nt measure-

ments (Fig. 3) taken before an actual eclipse come as close as

0.8 ° to totality, and reveal a much sharper rise in brightness in

this previously unexplored region than indicated by the extrapola-

tions on the lunar standards in Fig. i. This fact, which Gehrels

calls the "opposition effect," may be quite significant and will

be considered when evaluating the test results in Phases I and II.
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PHASE I -- pHOTOMETRY OF NATURAL SPECIMENS

Purpose:

In this phase the albedo and photometry of granular, vesicular,

and dendritic specimens are measured at 0 °, 30 °, and 60 ° viewing

angles by the large Grumman photometem, and the curves are com-

pared with the corresponding lunation curves of the moon. An at-

tempt is made to infer certain properties of the lunar surface from

the material and geometrical properties of the specimens. It is

also the purpose of this phase to identify and assess, qualitatively,

which of these numerous properties have a significant bearing on the

photometry of a surface.

Test Specimens and Experiments

The selection of the test specimens was based largely upon ex-

isting knowledge and experience in lunar photometry. For instance,

it was known that smooth surfaces composed of ordinary terrestrial

rocks and common granular materials such as sand, gravel, etc., were

not compatible with the lunar photometric data. Therefore, no

attempt was made to investigate such specimens. On the other hand,

it was widely accepted, even among proponents of conflicting lunar

models (such as meteor slag or fine dust), that the surface of the

moon was very dark, porous, and rough at some scale coarser than

the wavelength of visible light. These properties were used as

guidelines in selecting the 21 samples listed and described next.

Specimen Figure

No. Description Albedo No.

i _Silver Chloride Powder (Aged) .13 14

2 Copper Oxide Powder .07 15

3 Carborundum Powder (SIC) .14 16

4 Volcanic Cinder No. i (am-size particles) .ii 17

5 Volcanic Cinder No. 2 (am-size particles) .12 18

6 Volcanic Cinder No. 3 (am-size particles) .05 19

7 Furnace Slag No. i (Smooth side) .i0 20

8 Furnace Slag No. i (Rough side) .09 21

9 CuO on Furnace Slag No. i (Rough side) .06 22
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Specimen F igure
No. _Description A lbedo

i0 Volcanic Scoria No. i .13 23

ii Volcanic Scoria No. 2 .07 24

12 Cu0 on Volcanic Scoria No. 2 .05 25

13 Meteorite (Imilac) .08 26

14 Meteorite (Krasnojarsk 896) .05 27

15 Meteorite (Krasnojarsk 897) .08 28

16 Foam .06 29

17 Silver Chloride on Foam .ii 30

18 Coral No. i .16 31

19 Coral No. 2 .32 32

20 Coral No. 3 .25 33

21 Coral No. 4 .35 34

The silver chloride, .¢oppe_.,r. oxide, and carborundum are fine

powders (less than .037 _m diameter. They were lightly sifted, from a
height of a few inches, through a 400 mesh screen on to a flat,

smooth board for a minimum thickness of 2 ram. The silver chloride

was then darkened by exposure to sunlight, thus modifying the sur-

face to an oxide and possibly to some free silver.

The three volcanic cinder specimens are from the Haleakala Volcano

in Hawaii. They-consist of dark, porous particles, predominantly of

centimeter size, as can be seen from the photographs in Figs. 17

through 19. The grain size distributions of these specimens are

shown in Fig. 36.

The furnace slag, shown in Fig. 20, was supplied by NASA_

Manned Spacecraft Center. Its composition is not known, but its

structure (which is of greater interest here) consists of a complex

agglomeration of dark, coarse, sintered particles overhanging

deep recesses that interconnect and extend into the bulk of the

specimen. Its surface roughness, unlike that of the powder speci-

mens Nos. i through 3, is visible to the naked eye. One side of

the slab is fairly flat and is referred to as "smooth"; the other

side is more irregular and knobby and is termed "rough." Both

sides are equally rough in a 1/8 to 1/4 inch scale, which is
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the size of the grains and cavities. This particular specimen has
a porosity of 68%, as determined by the method described in
Phase III. Its bearing or crushing strength has not been measured,
but appears to be in the range of a few tons per square inch.
Specimen No. 9_ a composite model, was created by sifting copper
oxide powder onto the furnace slag.

The scoria specimens are volcanic in origin. They are almost
identical slabs having closed vesicules with a depth-to-diameter
ratio of two to one. Scoria No. i is slightly darker than No. 2.

The meteorites have a metallic composition and a pitted surface
of deep vesicules and sharp vertical edges, due mostly to terrestrial
weathering. They were loaned by the American Museum of Natural
History in New York City.

The foam (Specimen No. 16) is a dark, flexible, polyurethane
material, plucked to give it an irregular surface. A composite
model was created by sifting silver chloride (Specimen No. i) upon
it, and aging it in sunlight. An 8-ft-wide belt of this material
is currently being used at Grumman as a movable roadbed to simulate
lunar visibility in roving vehicle operations.

The sea corals, Specimen Nos. i through 4, were chosen because
they appeared to be very promising in view of the very intricate
structure they possessed both on a microscopic and a macroscopic
scale. Their albedo is high compared to that of the moon. Coral
No. i was darkened with a spray of paint, and its albedo was lowered
from 0.22 to 0.16. The other three coral specimens were examined
in their natural condition.

The brightness-phase relationships of all 21 specimens described
above were measured at 0 ° 30 °, and 60 ° viewing angles over an

area 3 inches in diameter. The area was illuminated by integrated

visible light. The results of the measurements are discussed in the

next section.

Discussion of Test Results

The results of the photometric measurements of the 21 speci-

mens listed above are shown in Figs. 14 through 35. The standard

lunation "bands" used for comparison with the test curves are those

delimited by the Fedoretz-Orlova, and Minnaert-van Diggelen curves

shown in Fig. i. Albedo values accompany the test curves.
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A study of the test results suggestsa number of conclusions,

some of which have been found by other investigators• Briefly,

the following remarks could be made at this time:

i • Most of the specimens show a maximum bright-

ness at zero phase angle (corresponding nearly
to full moon), this brightness being inde-

pendent of the viewing angle. This photometric

peculiarity of the moon, first discovered by

Barabashev, is obeyed by nearly all the speci-

mens we have selected• In no case was a shift

in phase noticed, that is to say, a lag between

zero phase (full moon) and maximum radiance, as

reported by van Diggelen for the rayed craters

shown in Fig. 2. It may be pertinent to note

that Gehrels' recent observations of certain

lunar craters, like our own measurements of

laboratory specimens, do not reproduce or con-

firm this photometric anomaly.

•

•

The zero phase brightness peak of most of our

specimens (measured by means of the beam splitter)

exceeds the extrapolated peak of the standard luna-

tion curve, within the +4.5 ° phase region near

eclipse. The "standard" lunar data in this

region appears to be suspect in view of

Gehrels' recent measurements showing a "non-

linear surge of brightness" near zero phase

angle, similar to that shown by our test speci-

mens, particularly the furnace slag.

The match between the test and lunar curves at

larger phase angles is good for the 0° as

well as for the 30 ° and 60 ° viewing posi-

tions for a number of the specimens, particularly

for the furnace slag. The photometric proper-

ties of the "cohesive-macrorough" specimens

at large viewing angles, unlike those of the AgCI

and CuO fine powders, were unknown before

these investigations, but appear to be equally

good. The hard furnace slag and the coarse-

grained volcanic cinder reproduce the lunar curves

as well as or better than the fine powders, at

all viewing angles.

20



The photometric curves and the microphotos of the AgCI,

CuO, and SiC fine powders are shown in Figs. 14, 15, and 16

respectively. Of course, the microphotos do not do justice to

the tridimensional complexity of the "fairy castles" built by

the AgCI and CuO particles. They do however, suggest the

degree of and difference in fluffing or "fairy castling" when one

Compares the relative size of the agglomerated particles; this

size is largest in the AgCI, •it is less pronounced in the CuO

and almost negligible in the SiC. This observation partly

accounts for their photometric signatures which exhibit back-

scattering characteristics consistent with their degree of

agglomeration or complexity.

The backscatter from the furnace slag is stronger on the

rough side than on the smooth side, as expected, and is strongest

(surpassing the lunar backscatter) when the smooth side is covered

with CuO powder. This indicates that the superposition of fine

dust or a "fairy castle" microstructure on top of a sufficiently

macrorough structure unnecessarily steepens the backscatter curve

beyond that of the moon, and that macro-rough structures could

reproduce the normalized lunar curve equally well, provided

they have the proper geometry. What this geometry consists

of in terms of actual size, shape, Land porosity is not yet very

Clear; all that can be said about it at this time is that the

solid, shadow casting elements are arranged in an "underdense"

pattern separated by a complex array of cavities appearing in

many cases to be interconnected.

The Hawaiian volcanic cinder N_ 2, Fig. 18, does not follow the

lunar standard curves as closely as the volcanic _inder No. i, Fig. 17,

particularly at large phase and viewing angles. There is a slight

"bulge" or increase in brightness at these angles, having a curious

similarity to the photometric properties of individual lunar

craters (Albategnius, Plato, Grimaldi and Schikhard) as shown in

Fig. 9. Generally, the elongation of the diagram of light scat-

tering in the direction of the light source (at zero phase angle)

denotes roughness of the surface, but the elongation or "bulge"

at large phase and viewing angles (i.e., in the direction of

mirror-reflected rays) could denote smoothness and gloss of sur-

face.(It could also denote other properties which will be discussed

in Phase II in connection with the "Thumb Tacks model"). Thus,

the existences of two brightness maxim, one toward the light

source and the other in the mirror-reflected direction, generally

denote a combination of gloss with roughness. This phenomenon

becomes most conspicuous at large viewing angles, as illustrated
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by one of the meteorite specimens (Krasnojarsk 897) in Fig. 28, and
by the synthetic foam in Fig. 29. In the case of the foam, the
elongation in the mirror-reflected direction was considerably re-
duced by covering it with silver chloride powder. The results
are shown in Fig. 30.

Except for the sea corals, the albedo of all specimens showing
a good fit with the lunar curves is of the same order as that of
the lunar surface. Also, like the surface of the moon• these
specimens have a nearly constant albedo at all viewing angles.

The sea corals, particularly Nos. i, 3, and 4, are interesting
insofar as they all exhibit a stronger backscatter than the moon
despite their relatively high albedo. This behavior is due most
probably to their extreme macroroughness, dendritic structure• and
an equally complex microstructure. The anomalous, rough outline
of the coral No. 4 curves, Fig. 341 is consistent with the exceed-
ingly large scale roughness Of the specimen relative to the area
viewed• and is indicative of poor integration by the photometer
of the changing shadow and light within the viewed area. The
3-inch area seen by the photometer is not large enough to encom-
pass a sufficient number of shadow-casting irregularities which•
in this case, are of the order of inches. In addition, the plane
of the viewed area is poorly defined.

Coral No. i was progressively darkened by a paint spray in
order to investigate its photometry under varying albedos. Specifi-
cally, the experiment was made to verify the notion that the light
scattering function of a given geometrical structure can vary with
its absolute reflecting capacity because of the influence of higher-
order scattering, that is, the light exchange between the uneven
surfaces themselves. The photometric properties of coral No. i
were measured at 0.22, 0.16, and 0.14 albedo respectively. The
results, at normal viewing positions only, are shown in Fig. 35
and indicate, as expected, that the backscatter of the specimen
does increase as its albedo is reduced• while its geometry remains
unchanged. One may state, therefore• that the backscattering func-
tion of a surface, particularly a complex one like the coral• is approxi-
mately proportional to its roughness and inversely proportional
to its albedo. Since most of the coral specimens exhibit a stronger
backscatter than the moon despite their high albedo (no such
specimens have been reported before)• one may reasonably conclude
that, on a relative scale, the sea corals examined here may be
rougher and more complex than the surface of the moon. However•
one cannot determine on the basis of these experiments the ab-
solute scale of the lunar surface reliefs responsible for the
observed backscatter, or the distribution of its micro or n_cro-
roughness.
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In evaluating the test results, it would be useful to recall
that what is being compared is the "detailed" photometry of small
laboratory specimens with the "integrated" photometry of the moon,
the latter representing an area orders of magnitude larger. The
standard lunation curves of van Diggelen represent averages for
lunar crescents encompassing some i0 = to 40 ° longitudes; as

to the Fedoretz-Orlova standards, they represent averages for the

highlands or the maria. The lunation curves of individual areas

on the moon reveal a noticeable scatter when shown with the aver-

age curves, as can be seen in Fig. 9. What is significant in the

_lunar standards3 in addition to the scatter, is the fact that

in all cases they peak at_r near zero phase and follow

•a consistently uniform trend at larger phase angles,

regardless of location on the moon or thegeologic history of the

area. Hence, the test curves should be assessed in the light of

the scatter within the existing lunar data and in the light of the

significant properties that are common to the lunation curves of

individual lunar areas or standard averages. In this perspective

most of the specimens that were proposed for this work on the

basis of their good match at normal viewing angle (Ref. Ii) repro-

duce the lunar data at the larger viewing angles reasonably well.

The best matches with the lunar photometric data

have been with the following four specimens: Furnace Slag

No. i, CuO-covered Volcanic Slag No. 2, Hawaiian Volcanic Cinder No. i,

and metallic Meteorite Krasnojarsk No. 896. The photometric curves

of these specimens have been redrawn inorder to be compared with

the actual Fedoretz-Orlova lunar photometric curves that represent

the averages for the continents and maria. Figures 37 through 40_

in which these comparisons are shown, speak for themselves.

Lunar Implications

A great deal of caution must be exercised in reaching conclusions

about the moon based on the properties of laboratory specimens that

reproduce or fail to reproduce the lunar photometric data. In order

to avoid the pitfalls which in the past have led to prematur%irrele-

vant or contradictory conclusions, it is essential to understand the

physics of the phenomenon that is responsible for the observed results

so that one may limit his inferences to those properties of the lunar

surface that could influence these observed results excluding those

physical properties that have little or no bearing on these observa-

tions.
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The photometry of nonincandescent bodies such as the moon or
laboratory specimens is largely a function of the "geometry or
spatial distribution and orientation of the surface elements of
the body capable of casting shadows and, of course, a function of
the change in the relative position of the light source, viewer,
and object. Hence, the possibilities of photometric investigations
are limited by the fact that the internal consistency, material

composition3* and absolute scale of roughness of the Shadow-casting

elements have little or no effect on the photometry of a surface.

Rougbnesses similar in shape and location_ but different in slze_

will produce the same variation of light scattering 9 pro-

vided their dimensions are not below a certain limit; this limit

is the point at which the shadow-casting elements become partly

transparent (as in the case of sand) or cause diffraction, and

consequently lose their characteristic reflection. Moreover, for

each type of photometric relief there is an infinite variety of

corresponding geometrical reliefs. Hence, the photometric simi-

larity of a given model to the lunar data cannot be looked upon

as proof that the real structure of the lunar surface corresponds

to an investigated scheme. The latter is only a conditional repre-

sentative of a whole variety of photometrically similar reliefs.

The differences in material composition, bearing strength, consis-

tency, depth, and actual scale of roughness that exist between the

good photometric specimens revealed by these investigations, indi-

cate that these properties are not very relevant photometrically,

as one would have expected from theoretical considerations; hence,

they should not be inferred from the lunar photometric data.

On the other hand, the low albedo and high porosity that is

common to nearly all the good photometric models (whether fine dust,

coarse volcanic ash, hard scoria, etc.) confirm previous findings

by others (notably by van Diggelen and Hapke)_ and indicate that

the outermost layer of the moon, whatever its origin, is nearly

uniformly covered by a dark, disrupted, and intricately vesicular,

granular or dendritic material. The albedo and porosity of the

contending lunar 'models (of the order of 10% and 80% respectively)

deviate considerably from those of common terrestrial soils and

rocks. These peculiarities of the lunar surface could be reasonably

accounted for by the action of micrometeorites and radiation in an

environment of high vacuum and low gravity, as discussed in Ref. 12.

Assuming the material is effectively not transparent.
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The major significance of our experimental findings is that

it is no longer necessary to postulate the existence of a layer

or veneer of fine dust on the moon as the only way to account

for the lunar photometric data, since "macrorough-cohesive"

specimens such as the furnace slag and volcanic scoria appear to

satisfy this data equally well when viewed by a "large" photo-

meter. These materials could exist on the moon as well as fine

dust.

It does not appear possible to favor any one model or to

narrow the considerable divergence in bearing strength that exists

between these modelsj by using the lunar photometric data alone.

However, the high porosity that is con=nonto nearly all these models

could provide the independent clue necessary to interpret the lunar

radio-thermal data, this_ in turn_ could lead to an estimate of

the internal consistency and bearing strength of the lunar surface

as discussed in Ref. 12. Phase II of this investigation was largely

conceived as an attempt to provide a quantitative estimate of the

range of porosities compatible with the lunar photometric data.
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PHASE II m PHOTOMETRY OF ARTIFICIAL MODELS

Purpose

The experiments in this phase utilize test specimens that are

artificially composed of "composite" (i.e., dust-covered) or "simple"

elements devised for the purpose of developing an intuitive and, if

possible, analytical grasp of the relationship of the geometrical

and photometric properties of the lunar surface , or of any surface.

More specifically, these investigations attempt to determine the

relative contributions of micro and macroroughnesses and the albedo

to the photometric function. Another significant objective of this

phase is to develop simple models which simulate in an idealized

form the microstructure of the lunar surface, and, unlike dust-

covered models, lend themselves to controlled manipulations and

graphical or mathematical analysis.

Test Specimens

The initial specimens in this phase consist (as originally pro-

posed) of simple, wooden or metallic, geometrical solids of varying

dimensions and slopes covered by a veneer of loosely sprinkled CuO

and/or SiC (carborundum) powders of known albedo and photometric

quality. The geometrical solids used were as follows:

prisms, pyramids, cups and domes, and hexagonal depressions.

In the composite models, the CuO cover simulates the albedo

and microroughness of the lunar surface, and the geometric shapes

simulate the gross topographic features of the moon such as craterlets,

bumps, ridges, and depressions. These models serve two distinct

purposes. One of them is to determine the contribution of the gross

features of the lunar surface to its photometric function. This is

accomplished by changing the dimensions, slopes and location of the

solids while keeping their albedo and microstructure unchanged. The

other purpose these models serve is to provide the experience that

is needed to create a contrived geometrical model that will match

the lunar curves without the help of a backscattering powder veneer.

It is desirable to eliminate the dust cover (without compromising

the backscatter) because the "fairy castle" structures built by fine

powders are too small and complex for detailed scrutiny, whereas

those built by geometric, "macro" (i.e., visible to the naked eye)

elements could lend themselves to quantitative analysis and could

illustrate graphicallythe relationship of the changes of light and

shadow on and within a porous model to their photometric signature.

92



As was anticipated, the knowledge acquired from the measurement
and analysis of a sufficient number of composite models led to the
creation of a simpler, more basic model essentially consisting of
centimeter-size horizontal and vertical elements. This model is
described and discussed in a succeeding section.

Experiments

Brightness vs. phase measurements were performed on various

combinations of "simple" and "composite" models. Model geometry,

albedo, viewing angle, and condition of illumination (i.e., rela-

tive position of the intensity equator with respect to model axis)

during each measurement are listed next.

I. The following CuO-covered models were measured at 0 °,

30 °, and 60 ° viewing angles:

i. 60 ° pyramids, i" high (Fig. 41a).

2. Hemispheric cups and domes, 3/4" in diameter, (Fig. 42a).

3. Hexagonal depressions, about 1/2" across _5. 42b).

at

i.

II. The prismatic solids, covered with CuO powder, were examined

0 ° viewing angle under the following conditions:

One to five 45°-prisms, 3rd column in Fig. 43.

a. Intensity equator parallel to ridges, Fig. 44.

b. Intensity equator perpendicular to ridges, Fig. 45.

2. 5-prism assemblies with 30 °, 45 .0, and 60 ° base

angles, fifth row in Fig. 43.

a. Intensity equator parallel to ridges, Fig. 46.

b. Intensity equator perpendicular to ridges, Fig. 47.

III. Mixtures of CuO and SiC powders in various proportions

have been sprinkled on a 5-prism assembly and a flat plate. The re-

suits at 0 ° viewing angle are shown in Figs. 43 and 44.

IV. The "Thumb Tacks" model with and without vertical strips

were measured at 0 °, 30 °, and 60 ° viewing angles. The results

are shown in Fig. 54.

The specimens described in Parts I, II, and III above are termed

"composite" models; those in Part IV are termed "simple" models,

and are discussed in a separate section.
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Discussion of Test Results of "Composite" Models

I. CuO-covered geometric solids examined at 0 °, 30 °, and 60 °

viewing angles. The albedo of all these models, regardless of the

number of the gross features or viewing position, is the same, and

is equal to that of the CuO powder on a flat surface.

• 60°-pyramids, Fi$. 41a. Four test curves are shown

in Fig. 41b, taken at 0 ° viewing angle, representing

the photometric properties of a CuO-covered flat

surface occupied by one, five, and nine pyramids re-

spectively. Notice thatthe addition of pyramids pro-

gressively increases the slope of the backscatter curve

from a value less than the lunar backscatter to one slight-

ly greater. Figures 41c and d show the test results at

30 ° and 60 U viewing angles for the five and nine

pyramid patterns. At these viewing angles the

9-pyramid pattern shows a larger deviation from the

lunar data than at 0 °. These curves clearly indi-

cate that gross features do contribute to the back-

scattering of light from a surface, but, under the

conditions of this experiment, this contribution is

negligible compared to that of the microstructure

and is within the lunar data scatter band, particu-

larly at 0 ° viewing positions• It is interesting

to note that the best fit is not given by the model

"saturated" with pyramids, but by the checkered pat-

tern in which the pyramids are i_terspaced bY flat

areas.

Heaagonal pits and hemispherical pits and dome__s.

These models, shown in Figs. 42a and b, are made up of

stamped metal plates covered with a thin layer of CuO

powder. The photometric measurements at the three

viewing angles are shown in Figs. 42c, d, and e. The
curves for a flat surface covered with CuO are also

shown in these figures for comparison• As in the

case of the pyramids, there is an increase in the

backscatter, but it is noticeably smaller probably due

to the fact that the shadow-casting pits and domes

are not so deep (or high) and so sharp in outline as

the pyramids. The increase in backscatter is larger

for the hemispheric shapes than for the hexagonal

shapes, but the difference is not large enough to

warrant further analysis at present•
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II. CuO-covered prismatic solids at normal v iewinB angle. The

photometric properties of these models depend upon the position of

the intensity equator with respect to the prism ridges. The inten-

sity equator is determined by the motion of the sun-source; the

equator is located in the plane of vision which contains the speci-

men and viewer. Both directions of sun-source travel, i.e., paral-

lel and perpendicular to the prism ridges_ have been investigated,

both analytically and experimentally. The discussion of test re-

sults is presented in terms of model combinations and lighting

geometry.

_ondition_No. i: One to five prisms, constant 45 ° base angle

(column 3, Fig. 43); intensity equator parallel to the prism ridges.

The photometric properties of the CuO-covered 45 ° prisms at

normal viewing angle are shown in Figs. 44a and b for one to five

prisms. The test curves are all nearly identical, indicating that

the number of prisms does not affect the photometry of the surface

under this particular set of conditions; this set is, in effect,

equivalent to a flat surface inclined to the horizontal at the

same angle as the base angle of the prism. This equivalence is

confirmed by analysis and actual measurement. The analysis is pre-

sented in Appendix A, and the measurement of a CuO-covered flat

plane at 45 ° is shown in Fig. 44c. The test curve in this figure

does not differ noticeably from the curve obtained from the CuO

powder on a horizontal surface_shown in Fig. 2. Thus, it is not

necessary to measure the photometric properties of the other prisms

in Fig. 43 under this particular condition of illumination.

_ondition No. 2: Same as Condition No. I except that intensity

equator is perpendicular to the prism ridges.

The photometric properties of the CuO-covered 45 ° prisms at

normal viewing angle are shown in Figs. 45a to e for one to five

prisms respectively. In general, the test curves have a slightly

sharper backscatter than measured in the previous condition, be-

cause under transverse lighting the prism ridges are in a position

to cast shadows. The test curves differ from one another only to

the extent that the "bend" at 45 ° phase shown by the single-prism

curve, Fig. 45a, becomes gradually smoother with each additional

prism, Figs. 45b to e. A typical analysis of the one-prism and

three-prism configuration is presented in Appendix A. This analy-

sis confirms the experimental curves, as indicated by the plotted

points in Figs. 45a and c, and shows that the subsequent blend-

ing of the "bend" in the one-prism curve is due to the presence
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of shadows in the trough of the prisms at phase angles larger than

45 ° . Since the single-prism configuration does not have any troughs,

the entire face re=mins exposed to light beyond 45 ° phase and,

consequently, registers a brighter signature.

The close fit between the analytical and test curves indicates

that, in general3 it is possible to predict the photometric be-

havior of a surface of known geometry_ like the geometry of the

prisms shown in Fig. 43j if the photometric function of an indi-

vidual element_ such as the face of a prism, is known. It is thus

possible to derive analytically the photometric curve of the other

models in Fig. 43, on the basis of a single measurement of a flat

surface with the same composition as the prisms inclined to

the horizontal at the same angle as the base angle of the prisms.

Conversely, it may be possib%e to reconstruct a surface or

surfaces to correspond to a known photometric function. The ana-

lytical technique developed for the purpose of verifying the prism

curves might be used to build a physical photometric model that

will obey the peculiar reflection laws of the moon. Past attempts

to build such a model have not been very successful.

Condition No. 3: Five prisms, base angle 0 °, 30 °, 45 °, 60 °, (row 5

in Fig. 43); intensity equator parallel to the ridges.

In this condition and the following conditions, the number of

prisms under observation remains constant, but the base angle of

the prisms varies from 0 ° (a horizontal plane) to 60 °. Under

this condition the sun-source travels parallel to the prism ridges.

In lunar terms, this particular combination of model and lighting

is equivalent to increasing the latitude of the observed lunar

areas at a given longitude. The lunar observational data shown

in Fig. 46 indicates that the photometric properties of individual

areas on the lunar surface are nearly independent of latitude.

The test results shown in Fig. 47 agree with the lunar data. Both

sets of curves show only a slight increase in backscatter with in-

creasing latitude or base angle. It is believed that no useful

additional knowledge will be gained by investigating the other

models in Fig. 43 under this condition of illumination.

Condition No_ 4: Same as Condition No. 3_ except that the intensity

equator is perpendicular to the prism ridges.

_ne photometric properties of the set of five prisms with

varying base angles are shown in Fig. 48. The test curves reveal

a progressive sharpening of the backscatter curves as a result of

increasing base angle or decreasing ridge angle of the prisms. The
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over-all increase in backscatter is more pronounced under the trans-
verse mode than under the parallel mode of illumination. Since the
albedo and the surface compositions of these models remain constant,
the sharper backscatter could be attributed mostly to the shadows
cast by the large scale features (i.e., prism ridges) at large
phase angles under the transverse mode of illumination. It should
be noted that the prisms cannot reproduce the lunar curve without
the help of the CuO cover. However, these experiments indicate
that it may be possible to achieve a match with the lunar curve
using lambertian, centimeter-size elements alone, provided these
elements have sharp edges and are arranged in the proper order--
which is, as yet, unknown. It is apparent that the investigation
of prisms, pyramids, hemispheric, conical, or ellipsoidal pits and
domes alone will not lead to this pattern, but sufficient knowledge
has been gained from these experiments to explore other, less con-
ventional geometries. The "Thumb Tack" model described below is
an attempt in this direction and appears to be more rewarding
than other similar attempts previously made at Grumman and else-

where (Refs. 3, 4, and 28).

Ill. Models sprinkled with mixtures of OeO and SiC powders.

In these experiments an attempt is made to keep the roughness or

geometry of the model unchanged and to vary its albedo within the

range of lunar albedo values. Copper oxide and silicon carbide

powders (having albedos of 0.06 and 0.15, respectively) are

mixed in various proportions and sprinkled over a surface of known

geometry. Both powders have about the same grain size, less than

0.037 mm. (passing through a 400 mesh screen).

The albedos of these mixtures were first measured at 0 ° 30 °

and 60 ° viewing angles. The result plotted in Fig. 49 show that

silicon carbide, unlike copper oxide or the surface of the moon,

does not have a constant albedoindependent of viewing angle.

The photometric curves (at normal viewing angle) of a flat

plate and a 5-prism assembly on which some of these mixtures are

sprinkled, are shown in Figs. 50 and 51. The results indicate that

the match with the lunar curve, or band, deteriorates with increasing

albedo or SiC content. These results are somewhat similar to

those obtained from the experiment in Phase I, Fig. 35, in which

coral No. i was progressively darkened by a spray of paint. In

this case, however, it is debatable whether the loss of backscatter

can be caused entirely by an increase of albedo. The loss could

_Iso be attributed to the inability of the SiC particles tO fluff

up and form "fairy castles." An examination of the constituent
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powders with a stereoscopic microscope revealed that this is indeed

the case. The CuO particles, unlike the SiC particles, agglom-

erate to form intricate labyrinthine structures. Photomicrographs of

these powders; shown in Figs. 15a and 16a, do not: unfortunately;

illustrate the difference in their packing and tridimensional com-

plexity to the degree revealed by stereoscopic viewing; however, they

do show the difference in texture and, superficially, the degree of

agglomeration; these photomicrographs show, in the case of the SiC

powder, the presence of shiny, specular surfaces that are mainly

responsible for their relatively high albedo and poor backscatter.

It may be concluded that the flattening of the photometric

curve due to the addition of SiC powder Could be due to a combina-

tion of albedo (i.e., multiple scattering) and geometry effects.

The photomicrographs suggest evidence of both effects and indicate that

the technique of mixing powaers is not necessarily conducive to a

meaningful study of these effects on the photometric function, since

it is difficult to separate them and measure or compute their indi-

vidual contributions. For this and other reasons mentioned above,

it was found more desirable to deal with "simple" models having one

order of roughness instead of two, i.e., "micro" and "macro," as

represented by the dust cover and geometric solids respectively.

However, the experiments with the composite models were useful in

revealing the type of geometry that may be needed in order to back-

scatter light in the same manner as the moon without a cover of

fine dust; this cover, as we have seen, is expedient to give a good

match with the lunar data, but is not very helpful, other than in

a qualitative sense, in giving an insight into the physics of the

phenomenon.

An Analysis of the Basic Geometry of Backscattering Surfaces

It can be stated on the basis of the previous experiments

that a "surface," which backscatters light like the moon, could

have a pronounced tridimensional structure composed of opaque ele-

ments larger than the wavelength of visible light and arranged in

such a manner that whatever light leaves by reflection through their

interstices, must leave more or less in the direction

of the source. These surfaces are sometimes said to have "negative

gloss." The "natural" and "artificial" models investigated thus

far exhibit this tridimensional structure, but to a degree too com-

plicated to be subject to a useful analysis on the basis of the

actual shape and contour of the surface. To overcome this diffi-

culty, an attempt is made in this section to build a tridimensional
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structure composed of elements of known geometry and albedo, arranged

in a series of patterns_ all of which are photo-

metrically similar to the moon or to the natural specimens examined

previously. These patterns may not necessarily conform to the ran-

dom geometry of the natural specimen or lunar surface, but they

may be considered as geometrically analogous to them in terms of

relative roughness and, possibly, actual porosity.

The search for a lunar photometric model made up exclusively of

"macrorough" features, which, unlike microscopic dust particles,

lend themselves to easy manipulation and analysis, may begin with

centimeter-size "lambertian" elements that are horizontal and/or

vertical to the viewed area and are oriented in a direction perpen-

dicular to the plane of vision including the intensity equator, as

shown in Fig. 52.

To begin, consider the simplest possible tridimensional model

composed of equal width opaque, horizontal strips of negligible thick-

ness "suspended" over a flat surface, as shown in Fig. 53a. Assume all

surfaces have the same albedo and that all scatter light according

to Lambert' s law. Let an observer or a photometer view this model

at an angle, E, from the normal to the surface.

The following discussion is highly qualitative and ignores

the fact that the flux projected on the surface varies with the

angle between the local normal and the incident beam. The dis-

cussion is meant to provide a general feeling for what may be

the behavior of these models; detailed quantitative analysis will

be completed in subsequent work.

At zero phase angle, when the directions of sight and illumina-

tion coincide, the brightness of this model is at its maximum because

the photometer sees 100% of the illuminated area 3 half of which

consists of the top of the suspended strips and the other half con-

sists of the AB-type areas on the base, as seen through the openings of

the suspended strips, Fig. 53a. As the light moves counterclockwise

along the intensity equator, area AB will be progressively darkened by

the shadow of the upper element. The rate of change of the brightness

vs. phase angle will depend of course upon the phase angle, the ver-

tical distance between the base and the upper element and the width

and spacing of the elements.

Neglecting multiple reflections, the brightness of this particular

model will reach a minimum at phase angle el' corresponding to the

position where a suspended element casts its full shadow over area AB.

At larger phase angles the shadow will move away_ the bright-

ness of the model as seen by the photometer will increase, ana_ un£ike

the geometry of the lunar surface, it will reach a second maximum at a

phase angle _2 which (as it can be seen in Fig. 53a) corresponds

to the position where the light source, the next opening between

the suspended strips and area AB are on a straight line. The

height of the second brightness peak depends upon the angle of
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incidence, i, and the geometry and nature (or finish) of the sur-

faces. It is clear that a tridimensional model made up of suspended

elements only could give the peculiar "oppositfon effect" exhibited

by the moon at small phase angles; however_ the match with tbe

lunar curve is very likely to deteriorate at larger phase angles.

Another tridimensional model, as simple as the preceding one,

c a n be made up of equal height vertical elements only, as shown

in Fig. 53b. This model, unlike the preceding one, will not behave,

photometrically speaking, the same way at all viewing angles. For

instance, at normal viewing, its brightness is expected to drop

sharply (depending on the height and spacing of these elements) as the

light moves away from a zero phase position, but at off-normal

viewing angles, the drop in brightness near zero phase may follow a

"cosine type" curve rather than a backscattering type curve, as shown in

Fig. 53b. At larger phase angles, the vertical strips start casting

their shadow over area AB, the brightness will drop at a faster

rate ; unlike the case of the previous model, no second bright-

ness peak will appear. However, the vertical strips are equally

unsatisfactory as a lunar model because they will not obey the

reflection laws of the moon at all viewing angles. It would be

interesting to verify this conjecture by experiments and/or analyses.

From the above discussion and sketches in Figs. 53a and b_ it

can be anticipated that a model consisting of a combination of

horizontal and vertical elements as shown in Fig. 53c_

may be free of the shortcomings of its constituents,

namely, the second brightness peak exhibited by the horizontal

strips and the "cosine type '_'curve at small phase and large

viewing angles exhibited by the vertical strips. In the "T" model_

shown in Fig. 53c, the vertical strips eliminate the second peak by

preventing the light rays from reaching area AB for a second time

during the same lunation, and the horizontal elements eliminate the

"cosine type" curve by casting their shadow over area AB at all

viewing angles. In the T-model, a slight, undesirable "bulge" is

anticipated on the lower portions of the brightness-phase curve

due to the Lambertian behavior of the exposed top of the horizontal

strips being the only remaining illuminated elements of the model

beyond phase angle _i" This portion of the curve could be

improved easily by superimposing a "second order" roughness on

top of the horizontal strips. This may be accomplished by adding

a small vertical element or elements in the middle of the horizontal

strip or two vertical elements or "lips" on the edges.
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In the following section, an experimental account of the

T-model is given. The results are preliminary, but they essen-

tially bear out the validity of the approach.

Discussion of Test Results of "Simple" Models

The T-model discussed in the previous section was built in

the following manner. The horizontal suspended elements were

simulated by the heads of thumb tacks pinned in parallel rows into

a flat base, the vertical elements consisted of two strips of blot-

ting paper, each one fixed between two rows of thumb tacks as shown

in Fig. 54a. It is safe to assume for the purpose of this investi-

gation that the shadow cast by the stems of the thumb tacks is

negligible. The entire model, excluding the vertical strips, was

sprayed with a gray nonglossy paint. The results of albedo and

photometric measurements at 0 °, 30 °, and 60 ° viewing angles,

with and without the vertical strips, are shown in Figs. 54b, c,

and d. The light source was moved in a direction perpendicular

to the alignment of the thumb tacks.

The thumb tacks model in its present configuration is not

photometrically homogeneous like the lunar surface or the natural

specimens when examined under both directions of the intensity equa-

tor with regard to the alignment of the tacks. This, however, is

not a serious shortcoming, since such a condition could be satis-

fied by arranging the tacks and the vertical eiements in a checkered

symmetrical pattern. Hence, by using the "aligned," nonsymmetrical

pattern as a preliminary step, we do not depart as far from a realistic

model as it would appear at first sight.

The experimental results, presented in Figs. 54b through d

show, as predicted, that the model with vertical and horizontal

strips is in better agreement with the lunar data than the model

with only horizontal elements. For convenience, these models

will be referred to as the "T" and the "suspended" models. The

difference between these models is particularly noticeable at

the 60 ° viewing position, Fig. 54d, where three points located

at or near the inflection points of the photometric curves have

been singled out for further scrutiny. Points I, 2, and 3 are

located on the suspended model curve, and points i', 2', and 3'

are located on the T-model curve.
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Scaled cross sections of both models indicating the illuminated and
shadowed areas seen by the photometer at phase angles 45 °, 60°3

and i00 ° are shown in Fig. 55. These

sketches reveal the following points of interest:

1 • In _-o. 55, _-h,_......_---,-,..-,,.-.,-,-,._.,..,-.,.,,_11"m_'_+=_a_.g=s....... see_ b$ r t-h_

photometer on the T-model are smaller than t'_ose

on the suspended model. This accounts for the

fact that in Fig. 54d, points i', 2', and 3'

are lower on the scale of brightness than

points 13 2, and 3.

• Unlike the lunar or the T-model curves, the

curve for the suspended model ascends between

points i and 33 indicating increasing

brightness. This behavior is adequately ex-

plained by the increasing width of the illumi-

nated areas in Fig. 55, that is,

.

CID I < C2D 2 < C3D 3 •

The second brightness peak anticipated in the

discussionof the suspended model is confirmed

by the test curve at 60 ° viewing angle. The

illumination geometry drawn for this point in

Fig. 55 does indeed show that area C3D 3 on

the base of the model, in full view of the

photometer, is almost fully illuminated, whereas

the same area in the corresponding cross section

of the T-model is in the shadow of the vertical

strip. The presence of this element is largely

responsible for the better match with the lunar

data at these critical phase angles. It is easy

to see why the curve of the suspended model dips

sharply past point 3, because area C3D 3 in

Fig. 55 is progressively shadowed by element

E3F 3 with increasing phase angles

It is not necessary to discuss all the peculiarities of the

test curves in Figs. 54 b through d. Most of these could be

reasonably accounted for by the surface and illumination geometries

of the individual points as illustrated previously. It is impor-

tant to point out that these experiments are preliminary, but they

nevertheless, provide sufficient knowledge and confidence to enable

one to improve the thumb tacks model or to create other contrived

models so as to yield an improved match with the lunar data.
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Significance of the Thumb Tacks Model

The purpose of the Thumb Tacks Model is not to replace the

"natural" specimens investigated in this work or elsewhere, but

to explain on the basis of macrostructure the reason why such

specimens reproduce or fail to reproduce the lunar photometric data.

The dust-covered solids that we have thus far investigated

suggest that the contribution of gross lunar features (within

telescopic resolution) to the observed backscatter is less im-

portant than the contribution of innumerable small irregularities

which, judging from close-u p photographs relayed by the successful

"Ranger" vehicles, are probably less than some centimeters in

size. The partial failure of the composite models to provide a

deeper insight into the geometric and photometric relationships of

backscattering "surfaces," has made it necessary to build and

investigate dust-free, though contrived, lunar photometric models.

The Thumb Tacks model is a crude example of such models, but it

marks a new departure toward the solution of the lunar photo-

metric puzzle. It promises to be a valuable tool which

allows one to see and follow the sequence of shadow-

ing, on and within a backscattering-type structure, with greater

convenience and accuracy than would be possible with dust-covered

and other complex natural specimens.

The Thumb Tacks model has confirmed that shadowing within a

porous structure, more than any other optical phenomenon, is probably

primarily responsible for the peculiar photometric properties of

the lunar surface. The albedo of the surface and the subsurface

(visible through the pores), particularly when uniform, appears to

play a minor role in the backscattering process. In addition , the

Thumb Tacks model has revealed that the shadow-casting elements in

the porous crust (which appears to cover uniformly the entire

visible surface of the moon) are_nade up predominantly of sharp

edges and overhanging horizontal members. No conclusions can be

reached 3 based on this model_ about the actual scale of and the

interfacial bond between these elements. It appears_ bowever_ that

both quasi-horizontal and quasi-vertical members are necessary and

that neither set of members is sufficient by itself to account for the

reflection of the lunar surface at all phase and viewing angles.

The horizontal or "suspended" elements, if properly arranged,

could reproduce the unusual lunar "opposition effect" at very small

phase angles, and fail to reproduce the rest of the lunar curves at

larger angles. Vertical elements were introduced in the Thumb Tacks

model in order to improve its backscattering property; this addi-

tion to the model may be very significant since such elements render
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the model less tenuous and could possibly lend to At the stability

and strength that is not associated with "suspended" models. How-

ever, this conclusion must remain tentative until further investi-

gations of various "suspended geometries" are conducted.

future derivatives is that such models lend themselves more readily to

an analytical formulation of the photometric function in terms of the

illumination angles and the tridimensional geometry of the surface.

Such a relationship is of more than academic interest. The porosity

of the lunar surface_or a relatively narrow range of porosities

dictated by the lunar photometric data_may be quantitatively assessed.

As was indicated before, this information could, under certain con-

ditions, complement the lunar radiothermaldata in estimating the

internal consistency, bearing strength, insulating, and other en-

gineering properties of the lunar surface material.

A shortcoming of the Thumb Tacks and perhaps other "simple"

models is the fact that such models, unlike the lunar surface or

most of the natural specimens we have examined, do not or are not

likely to exhibit a constant albedo at all viewing angles. This

fact could be attributed mostly to the mathematical idealization of

the snadow-casting elements. In the case of the terrestrial

specimens, or the lunar surface, there is sufficient random-
ness in the distribution and orientation of the reflecting surfaces

to minimize the variation of albedo with change in viewing angle.

In the case of the contrived models, this difficulty could possibly

be overcome (without compromisin_ the inte_rityo or realism of the

model) by rounding off sharp corners, so tbat

incident light could strike the surfaces at a more or less equal

angle with respect to the local normal, and consequently, according

to the principle of Lambertain reflection, yield a more uniform

brightness or albedo at all viewing angles.

Contrived models like the Thumb Tacks, unlike the composite,

dust-covered models, offer the advantage of enabling the experi-

menter to vary the albedo of a given model without incurring the

risk of changing its structure (as we did when we mixed

SiC and CuO powder_. Specifically, varying the albedo within a

given model would consist in painting the uppermost layer of the

tridimensional model with a paint of different brightness than that in the

interior of the pores. It is surprising that composite-albedo

models, theoretical or experimental, have not been considered by

previous investigators. Such models appear to be quite realistic

in view of the possibility that the outermost surfaces on the moon
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could be darkened (or reddened) more extensively by radiation and

other mechanisms than the interior of the pores. The latest ob-

servational data by Gehrels et al. could be interpreted as lending

support to this view. Thus it may not be necessary to postulate a

ten_ous cloud of particles in order to account, photometrically

speaking, for the "opposition effect" at small phase angles.

This particular phenomenon might be explained by the increased

brightness of the interior of the pores which come into view at

very small phase angles. In addition, the composite-albedo,

tridimensional model might explain the "reddening" of the lunar

surface at increasing phase angles (again reported by Gehrels)•

when we consider that the bright interiors of the pores (which

could tend mostly toward the blue) become less and less visible

at these angles, while the duller• "weathered" outermost surfaces•

(likely to be darker or red), will contribute more and more to

the observed color. This newly discovered peculiarity of the

lunar surface imposes an add%tional constraint on model-matching

experiments in lunar photometry. It would be very desirable to
look for evidence of "red shift" in the natural specimens in

Phase I that have passed the photometric test under integrated

visible lighting. This may be accomplished by measuring the

brightness vs. phase relationship of these specimens at discrete

wavelengths in the visible spectrum. The reddening effect may

conceivably affect the estimate of the porosity of the lunar surface

material from the photometric data. This is because

increasing the volume by undercutting the sides of the cavities

between the shadow-casting elements has an effect on the

backscatter curve similar to increasing the albedo of the interior

of the cavities that come into view at small phase angles. Thus, a

composite-albedo model exhibiting the reddening effect is likely to

be less porous than one which has a uniform albedo. "Simple" models

of the Thumb Tacks variety lend themselves very conveniently to the

simulation and study of this newly observed lunar phenomenon.

Experimental studies involving the porosity and photometry

of "natural" specimens having a uniform albedo are reported in

the next phase.
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See Figure 54d for Location of
Points on Lunation Curves
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_HASE III- PHOTOMETRY OF "CONTROLLED" PARTICULATE SPECIMENS

Purpose

It is the purpose of this phase to investigate the effect of

grain size, porosity (or apparent density), and albedo on the

photometric function, and to attempt to clarify some of the con-

fusion that has obscured the interpretation of the lunar photo-

metric data.

Test Specimens

The test specimens in this phase consist of particulate

materials only. Such materials may be made up either of artifi-

cial spheres of any controlled size, or of randomly comminuted,

irregular particles ranging in grain size from microns to centi-

meters. In the study of porosity effects on the photometric

function, the porosity of such materials may be varied by either

one of the following tecPmiques:

i • Ordered packing: Select "macro" spheres

(i.e., of the order of millimeters or a centi-

meter) of uniform albedo and diameter (material

composition is not important so long as the

spheres are opaque), and arrange them in various

"stable" or "unstable" packing patterns. The

porosity of stable patterns may range from a

minimum of 26% for the face-centered cubic

packing to 66_ for the diamond cubic. Higher

porosities, approaching 100%, may be obtained

by either bonding the spheres or physically

suspending them using thin elements of negligi-

ble shadow casting capability•

. Random packing: Use comminuted powders sorted

into various particle sizes. Such powders,

when loosely sifted, assume varying degrees of

porosity depending upon the importance of

two opposing effects; one of these effects

would favor a high porosity when the particles

are small enough to be susceptible to inter-

particle cohesive forces, whereas the other

effect would favor a high porosity when the
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particles are large and contain micropores.
When the large porous particles are broken
down into finer elements, one may expect a
gradual decrease in porosity due to the
destruction of the micropores. However, one
may reach a limit of particle size below
which the porosity of a loosely sifted powder
could increase again due to the predominance
of surface forces over body forces.

The first technique, unlike the secon_ has the advantage
of lending itself to accurate control of grain size and albedo
during the process of varying porosity. However , the "random
packing technique" was adopted in these experiments because it is

much less laborious than the "ordered packing technique," and,

moreover, because it allows the "dissection" of the Phase I

natural specimens that were investigated in their "as is" con-

dition. The purpose of this attempt is not to create new photo-

metric models, but to account better for the photometric proper-

ties of the original specimens in terms of their porosity, grain

size, and albedo.

Two specimens, volcanic cinder and furnace slag_ successfully

investigated in Phase I, were selected for further photometric

analysis. Since the original specimens were not sufficient for

the needs of this operation, new batches were ordered from their

respective sources. Six specimens of volcanic cinders (differing

in color, albedo and surface texture) were received from Hawaii.

These samples originated from the sumit of Haleakala on the

Island of Maui (in the area known as Red Hill and Kolekole).

According to Dr.-W. R. Steiger (Ref. 25) who was instrumental in

securing these samples, four of them, Nos. 4, 5, 6, and 9 (red-

dish-brown in color) were from the surface and thus were con-

siderably weathered. Sample Nos. 7 and 8 (black in color) were

taken from a cut, and thus they are relatively unweathered. The

age of these volcanic cinders is estimated to be between 0.4 and

0.9 million years. Their composition is not well known, but

they are believed to belong to the Alkalic Basalt group. Their

probable chemical composition, given by Dr. Steiger, is as fol-

lows:

SiO 2 43%

AI203 14%

Fe Oxides 15%
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MgO 6%

CaO 11%

Na20 4%

K20 1%

TiO 2 6%

All six specimens were investigated photometrically at all
viewing angles in an "as-received" condition in order to select
the most suitable one for crushing and screening. The results
are shown in Figs. 57a through d. All the specimens show appre-
ciable backscatter and reproduce the lunar data reasonably well.
Volcanic cinder N_ 4, showing one of the best fitswith the lunar
curves, was selected for further investigation. Its original
grain size distribution is shown in Fig. 56. In Figs. 57a
through d, it is of interest to note that volcanic cinders No. 7
and 8 show the poorest fit with the lunar curves despite their
low albedo. This anomaly is probably due to their relatively
smoother, unweathered surfaces as pointed out by Dr. Steiger.

Several new specimens of furnace slag were selected from a
new shipment from NASA Manned Spacecraft Center, Houston, Texas,
and were photometrically measured at all viewing angles. The
results of three specimens_ labeled Nos. 2, 3, and 4, are shown
in Figs. 59a through d. These figures also include the Furnace
Slag No. i curves obtained in Phase I. None of the new
specimens reproduce the lunar curves as closely as Furnace
Slag No. i. Since there was not a sufficient quantity of this
particular specimen for communition and segregation, the next
best furnace slag, No. 4, was chosen.

Experiments

The volcanicclnderand furnace slag specimens chosen for

further analysis were ground and screened into seven gradations

of particle sizes, ranging from centimeters to microns as shown

in Tables I and II and Figs. 61 and 63. For both specimens, the

original, unbroken lot is labeled as No. i and the seven ground

and segregated lots of powders are labeled as Nos. 2 through 8 in

order of decreasing grain size.
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For the photometric measurements, the powders were loosely

sifted from a height of a few inches onto a flat ]_oard. Likewise,

in order to determine the porosity of the specimens, each lot of

powder was loosely sifted into a narrow graduated tube up to a

height of about 3 inches. The weight and volume of the powder

weremeasured in order to determine its apparent density, Pa"

The real density, Pr' was determined by measuring the volume

of the solid particles by the water displacement method. These

measurements 3 including the calculated porosities are shown in

Tables I and II for the volcanic cinder and furnace slag_

respec rive ly.

The experimental data on apparent density, porosity, and

albedo as a function of grain size are plotted in Fig. 61 for the

vo lcanic cinder and in Fig. 63 for the furnace slag.

The albedo and photometric properties for each lot of powder

at the three viewing angles were measured. The results for the

volcanicclnderconstituents are shown in Figs. 58b through d, those

for the furnace slag are shown in Figs. 60b through d. The F are

analyzed in the next section in terms of their grain size, porosity,

and albedo.

Discussion of Test Result_

The size reduction of the particles or elements of an ini-

tially good lunar photometric model was originally conceived as

a means of varying the porosity of that model; it was proposed

as an experiment largely based upon the notion that the progressive

reduction of the'size of the particles "could give a poorer match

with the lunar data (mostly due to a reduction in porosity) perhaps

including the micron range despite the fluffing caused by the pre-

dominance of the surface forces over body forces." This statement

was made in a preproposal inquiry (Ref. ii) preceding this work.

The expected failure of the fine particles in the micron (i.e._

"fairy castle") range to reproduce the lunar data was attributed

at that time to a possible increase of the albedo of the powder in

these size ranges. These predictions are largely corroborated by

the results of our experiments that include measurements of porosity_

albedo_ and photometric function of two comminuted specimens segre-

gated into grain sizes covering a spectrum of three orders of

magnitude (0.01 mm to i0 mm).
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An inspection of Figs. 61
points of interest:

and 63 reveals the following

As expected_ both specimens show an increase of albedo with
decrease of particle size. This increase is more sudden below a
grain size of 0.i mm3 than is gradual throughout the spectrum.
Above 0.i mm the albedo of volcanic cinder is constant_ whereas
that of furnace slag shows a slight but surprising increase with
increasing grain size.

The predicted porosity vs. grain size relationship is obeyed
by both specimens. Figures 61 and 63 show a dip in the porosity
curve (or a peak in the apparent density curve). The loss of
porosity around the middle of the spectrum is due (as discussed
in a preceding section) to the fact that the micropores within

the individual particles are destroyed without, as yet, being com-

pensated by the fluffing action of surface forces. The point of

minimum porosity is reached sooner by the furnace sla_ (at a

grain size of about 0.7 mm) than by the volcanic cinder (at a grain

size of about 0.3 mm). Both specimens exhibit the same minimum

and maximum porosities, about 55% and 70% respectively. The 70%

maxi_m is experienced at both ends of the particle size spectrum.

The real densities of the specimens, unlike their porosities,

differ appreciably. The average real density of 2.93 g/cm 3 for

the volcanic cinder is comparable to basaltic rocks_ whereas a

value of 4.5 for the furnace slag is indicative of appreciable

metallic content. The fact that both specimens have similar

porosity-grain size relationships, despite differences in real

densities, indicates that the cohesive forces between the furnace

slag particles are stronger than those between volcanic cinder parti-

cles. Of Course, the ambient gravity field doesplay a role in

the porosity-grain size relationship. It is conceivable

that both of these specimens would assume measurably higher porosi-

ties in the lower gravity field of the moon, particularly toward

the low end of the particle size spectrum.

For convenience in assessing qualitatively the photometric

test results, all measurements taken on the constituents of a

given specimen at a given viewing angle are plotted on the same

chart. Figures 58b through d and 60b through d show clearly that

the predicted deterioration of the match with the lunar data at

reduced grain sizes is largely confirmed for both specimens. This

observation should not necessarily be interpreted to mean that

fine, micron-size powders are less likely to exist on the moon

than coarse, millimeter to centimeter-size particles. It is the

133



purpose of these experiments to show that grain size, per se, is
not a key photometric property, and that information on albedo
and porosity are needed for a meaningful interpretation of test
results.

The data in Figs. 58 and 60 are plotted in a different form
in order to show, in a quantitative manner, the progressive devia-
tion of curves labeled i to 8 from the lunar standard band. Fig-
ures 62 and 64 show the actual extent of this deviation as a
function of particle size for volcanic cinder and furnace slag
respectively. The expression "match index" is used as a measure of
this deviation and is defined as the ratio of the area under the
test curve to the area under the lunar curve. The latter curve is
determined by a llne bisecting the gray lunar standard band. Both
areas are delimited to the left by a vertical line at 0° phase

angle and at the top by a horizontal line at ordinate 1.0. Assum-

ing no local irregularities in the test curves, a match index of

1.0 would suggest a good match with the lunar data. The greater

the deviation of the index from the value 1.0, the poorer is the

match with the lunar data. Indices less than one indicate that the

specimen has a sharper backscatter than the lunar surface. Match-

index vs. grain size curves are plotted for each viewing position.

The curves for both specimens at all three viewing angles, begin

with I equal to about one at the coarse end of the particle size

spectru_ and rise noticeably in the direction of the fine particles.

This rise, which actually represents a deterioration of the back-

scattering function, is not continuous, but reverses itself toward

the middle or fine end of the spectrum, (about 0.i mm particle

size). A glance at the porosity vs. grain size chart on the

opposite page reveals that this reversal, (which in effect is an

improvement of the backscattering function) is due largely to an

increase of porosity caused by the fluffing action of surface forces.

However, at around 70% porosity, at the fine end of the spectrum,

the match index does not go all the way back to 1.0, from which it

started at the coarse end of the spectrum, but stops around 1.5.

The most probable explanation of this phenomenon may be found in the

behavior of the albedo vs. _rain size curves. We notice in Figs. 62

and 63 that the albedo of both specimens increases rather suddenly

below 0.I mm particle size. This increase, predicted on the basis

of data by Hapke, is about 30% for volcanic cinder and 40% for

furnace slag. It is conceivable that multiple reflection in a high

albedo medium could lighten the shadows that are primarily responsible

for the backscatter. The experiments in Phase I with Coral No. I

having varying albedos (Fig. 35) give sufficient evidence of this

effect, and justify the conclusion that in complex random surfaces

such as may be found
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on the moon, a high porosity, of the order of 70%, is necessary,

although not sufficient without a sufficiently low albedo to account

for the photometeric properties of the lunar surface. The other

important conclusion to be derived from these experiments is that

tile grain size of the material covering the lunar surface cannot

be inferred directly from its photometric properties. However, there

are a number of reasons why the grain size of laboratory specimens

should be known and preferably controlled: it should be known

because, as we have demonstrated, grain size influences other physi-

cal properties that are photometrically relevant, such as porosity,

(particularly wben tl_e particles are fine and are loosely sifted)

and albedo (in the absence of darkening due to an external agent);

it should be controlled because t1_ere is a lower and upper limit

of grain size beyond which photometric measurements may lose their

meaning. The lower limit, of the order of a few microns, is deter-

mined by the loss of opacit V of t!_e _rsi_ or diffraction when the

_,....oc,- not too large in compari-grains and the spacing l.e_ .........._ t:_e_ are

son with the wavelength of visible light. The upper limit is deter-

mined by the size of the area viewed by u_e photometer. The grains

must be small enough (of the order of a few centimeters in our case)

for a representative number of them to l_e included under the area

of observation. A more accurate dete_aination of the grain size

boundaries as a function of the wavelength of light and viewing

area is very desirable h_ _=yond the _;cope of this study.

These experiments render the t'_i_k ,';ingle layer lunar dust

tbeory less tenable in view of the, _ _c_mr;2tibility of fine rock

dust with the low aibedo oi the moon, unless, of course, it be

demonstrated that certain mechanisn_s operating on the moon could

darken the rock dust without fusing or cementing it. Sytinskaya

claims, on the basis of extensive albedo-color matching tests, that

darkening on the moon can only be explained by the fusion of

meteorites and target material due to the heat generated at impact.

A Reevaluation of Former Photometric Models

Essentially, the results of the above experiments confirm

previous findings. They make it clear that tlqe best known lunar

photometric models, such as van Diggelen's "peat moss" (a vegetal

material), and Hapke's "fairy cs_ties" (_v_de up of loosely sifted

fine metallic oxide powders) appear to owe their success to their

high porosity_ low albedo, and intricate structure rather than to

their grain size, chemical composition, or degree of internal

cohesion.
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In addition_ our experiments help to narrow existing areas of
disagreement. For instance, cont_dictory statements made by
Barabashev and van Diggelen regarding the photometric properties
of volcanic cinders, could be resolved in the light of the above
experiments. Both of these investigators measured the photo-
metric properties of volcanic cinder specimens of known albedo and
grain size, but of unknown porosity. Their results are shown in
Figs. 6 and 7. The specimen measured by Barabashev had particle
sizes of 2 mmand coarser, whereas, van Diggelen's specimen had
an average grain size of 0.i mm. These data and our own porosity vs.
grain size curves s_ow t at t-e porosity of t'nese specimens signifi-
cantly differed from one anot'aer_ and tl_at this fact may be sufficient
to account for their conflicting p_,otometric properties.

Figure 61 indicates that the porosity of volcanic cinder at
the grain size of 0.i mm, used by van Diggelen, is about at its
minimum (50%), hence_ it is most unlikely to reproduce the lunar
data. This particular region of the grain size spectrum seems to
represent the point where the grains are too small to contain
micropores and too large to be susceptible to the fluffing action
of interparticle cohesive forces. As to the specimen used by
Barabashev, (2 to 6 mm grain size) it is safe to assume, on the
basis of Fig. 61 data, that it had a porosity of about 70%, hence
is most likely to pass the photometric test. Our photometric ex-
periments confirm the conflicting results reported by van Diggelen
and Barabashev, and our porosity measurements adequately account
for this conflict. It may be concluded that it is premature to
infer the presence or absence of volcanic cinder on the moon on the
basis of the photometric data, and that the existing contradiction
can be resolved if the photometric properties of terrestrial vol-
canic cinders are interpreted in terms of their porosity and albedo
primarily, rather than in terms of their grain size or chemical
c omposition.
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(a) Cinder N o .  4 

(b )  Cinder No. 5 
Figure 5 7. Pho tomet ry  of C o a r s e - G r a i n e d  Hawai ian  Volcanic  Cinder Specimens 

(Sheet 1 of 5) 
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I 

(c) Cinder No. 6 

(d) Cinder No. 7 
Figure 5 7. Photometry of Coarse-Grained Hawaiian Volcanic Cinder Specimens 

(Sheet 2 of 5) 
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( e )  Cinder No. 8 

( f )  Cinder N o .  9 
F i g u r e  57. Photometry  of Coar se -Gra ined  Hawai ian  Volcanic  Cinder S p e c i m e n s  

(Sheet 3 of 5) 
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(a) Cinder # 4 ,  Ground and Sorted 

(b) Grain Size (Magnified 2 1 X )  

Figure 58. Photometry of  Volcanic Cinder # 4 as Function 
Poros i ty ,  and Albedo (Sheet 1 of 5) 
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(c )  Magnified 20X 

(d) Magnified 25X 

Figure 58. Photometry of Volcanic Cinder 4 as Function of Grain S ize ,  
Poros i ty ,  and Albedo (Sheet 2 of 5 )  
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(e) Magnified 25X 

(f) Magnified 65X 

Figure 58. Photometry of Volcanic Cinder # 4 as Function of Grain Size, 
Porosity, and Albedo (Sheet 3 of 5)  
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(g) Magnified 65X 
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(b) 
Figure 59. Photometry of Massive Furnace Slag Specimens (Sheet 1 of 3) 
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Figure 59. Photometry of Massive Furnace Slag Specimens (Sheet 2 of 3) 
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CONCLUSIONS

The following conclusions may be made at this time regarding

the nature of the lunar surface; these conclusions are based on

photometric experiments and analyses performed in three phases,

dealing respectively with "natural_" "artificial," and "controlled"

models.

Phase I

The "natural" models include granular, vesicular, and

dendritic specimens. Good agreement with the lunation curves of

the moon at 0° 30 ° and 60 ° is obtained with very fine powders,

coarse volcanic cinders and scoriae_ furnace slags, sea corals,

metallic meteorites_ etc.

Some of the specimens exhibit a brightness surge near zero

phase angle similar to lunar data recently reported in the litera-

ture. This peak exceeds by as much as 20 per cent the extrapolated

peak of the Orlova-van Diggelen lunar standards used throughout

this report as a basis of comparison.

It does not seem necessary to postulate a layer or veneer

of fine dust on the moon in order to account for the lunar photo-

metric datas since "macrorough," cohesive materials such as

volcanic cinder or furnace slags_ satisfy this data equally well when

they are sufficiently dark and porous, and when they are examined

by a large photometer. Most of the specimens that are photo-

metrically analogous to the lunar surface exhibit 3as reported by

others, a low reflectivity and _an "underdense " porous structure,

but they differ widely from one another in composition, strength_

consistency_ depth, and grain size or roughness. It is apparent

that the latter properties are not photometrically relevant,

hence_ it would be premature to infer them from the lunar photo-

metric data to favor any given specimen as a lunar model on the

basis of its photometric analogy to the lunar surface. It does

seem possible, however, to determine the porosity of the outer-

most layer of the moon from its photometric properties and to

use this information to help interpret the lunar radiothermal data

which, in turn, could lead_ under certain assumptions, to an

estimate of the internal consistency and bearing strength of the

lunar surface.
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Additional advantage was taken of the large area-viewing
capability of the Grumman photometric analyzer in investigating
"macrorough" contrived models in an attempt to account for the
photometric properties of the natural specimens, or the moon,
in terms of their albedo, porosity, and grain size.

Phase II

"Artificial" models investigated in this phase included

"composite" and "simple" models. "Composite" models consist of

centimeter-size conventional geometric solids (such as prisms,

pyramids, cusps, and domes, etc.) covered with a backscattering

powder. These models fulfilled two useful purposes; they pro-
vided a means of evaluating the relative contribution of "first"

and "second' order roughness to the photometric function, and

they led to the discovery of unconventional, "simple" (i.e., dust-

free) models which promise to offer an intuitive and mathematical

basis for the study of the backscattering phenomenon in general

and the reflection laws of the moon in particular.

In the study of the "composite" models, the dimensions,

slopes, distribution, and orientation of the geometric solids were

changed while keeping the microstructure and albedo of their sur-

faces the same. A useful analytical technique was developed to

check and confirm the test results. It was found that the con-

ventional geometric solids do contribute to the backscatter when

they have steep slopes _nd sharp edges, and when they are oriented

in a direction perpendicular to the intensity equator. However,

they are unable to reproduce by themselves the lunation curves of

the moon without a complex microstructure, which in these models

is simulated by a'veneer of CuO powder. If We assume that the

geometric solids simulate relatively large lunar features such as

craterlets_ ridges, and rills, we may tentatively conclude

that these features play a minor role in the over-all change of

brightness of the lunar surface during a lunation_ and that the

lunar backscatter is predominantly due to the shadow casting charac-

teristic of innumerable small surface irregularities. The well-

known photometric similarity of the seemingly smooth maria and the

obviously rugged highlands of the moon lend some weight to this

view and suggest that the outermost layer of the moon, regardless

of the origin and nature of the underlaying layer, is nearly

uniformly covered by a dark, disrupted material to an unknown

depth in which the shadow casting, solid elements are arranged in

an "underdense"pattern separated by a complex array of cavities
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which,might be interconnected. Since for each photometric function
there corresponds an infinite variety of geometric reliefs, it
would seem difficult to give a more reliable description of this
layer in terms of the actual dimension and spatial arrangement of
its constituent elements. It is safe to state that the "first"
order irregularities are below telescopic resolution and (judging
from radar data and close-up photographs of the moon relayed by
"Ranger") are likely to be no larger than a few milimeters or centi-
meters. As to the spatial arrangement of the small solid elements,
some insight was gained into this important property of the lunar
surface. Knowledge was gained of backscattering surfaces in general,
when a successful attempt was made to simulate the microscopic
complexity of "fairy castle" structures by means of dust-free, con-
trived models made up of centimeter-size elements arranged in such
a manner as to present sharp vertical edges and overhanging hori-
zontal members.

The "simple" models and their future derivatives have many
advantages. They reveal the relevant photometric parameters, and
help to establish, quantitatively, the proper value of these para-
meters. A preliminary model built by means of thumb tacks has
shown that shadowing on and within such a porous structure, more
than any other optical phenomenon, canbe primarily responsible for
the peculiar photometric properties of the lunar surface, and that
b6th quasi-horizontal and quasi-vertical elements having a well-
defined proportion and spacing appear to be necessary components of
a lunar photometric model because neither set of members is suffi-
cient by itself to account for the reflection of the moon at all
viewing and phase angles. This preliminary conclusion is signifi-
cant but must remain tentative until a number of "suspended
geometries," devoid of vertical elements, are studied. Additional
advantages of "simple" models of the "Thumb Tacks" variety include
the convenient simulation and study of newly observed lunar pheno-
mena such as the "opposition effect," "reddening with phase," etc.
The technique could apply equally to the study of other reflecting
celestial bodies whose photometric properties are known.

Phase III
i --

Hawaiian volcanic cinder and furnace slag specimens, both photo-

metrically analogous to the moon, have been ground and sorted into

seven particle sizes, ranging from centimeters to microns and

photometrically analyzed at 0°, 30 °, and 60 ° viewing angles. As

anticipated, the match of both specimens with the lunar data

deteriorates as the particles get finer. The test results do
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not necessarily imply that the photometric properti@s of the

moon are incompatible with very fine particles; instead, they

tend to confirm the conclusions of Phase I experiments regarding

the apparent irrelevance of grain size as a key photometric property.

The effect of grain size on the photometric "match indeX'

may be interpreted mainly in terms of changes in porosity and

albedo. This interpretation is complicated, but not obscured

by the apparently beneficial role played by micropores within

individual particles at the coarse end of the particle size

spectrum and by the "fluffing" action of surface forces
at the fine end of the spectrum. The match index

reaches its maximum deviation at around a grain size of 0.1mm

(at Ig) where the influence of these beneficial effects

appears to be at its minimum.

Although the porosity of the original, uncomminuted speci-

mens is restored at the fine end of the spectrum (micron range)

due to the action of surface forces, the 30 per cent to 40 per

cent increase of albedo and the consequent attenuation of the

shadows due to multiple reflection and loss of opacity, appears

to be sufficiently detrimental to offset the beneficial effect

of rise in porosity and to prevent the match index from going

back to 1.0.

Conflicting statements made in the literature regarding the

presence and grain size of volcanic cinder on the moon, based on

photometric experiments, may be resolved if the test results are

primarily interpreted in terms of porosity and a lbedo rather than

in terms of grain size and chemical composition. There is

extensive lunar data and good agreement on albedos_ As to the

porosity of the lunar surface material, _ur experiments suggest a

value of the order of 70 per cent. Additional experiments and

analytical studies are possible and desirable to improve or confirm

this estimate.
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RECOMMENDATIONS

A number of useful areas for further investigation suggest

themselves. Some of these areas are directly related to photo-

metry, other areas involve the study of the less explored

aspects of the lunardata.

A major recommendation in the photometric field is to

utilize the recently observed data reported in the literature.

I£ would be of interest to account for the "opposition effect"

and the color change of the lunar surface with phase. Some of

the natural specimens described in this report exhibit the

"opposition effect" (recorded by means of abeam splitter special-

ly provided for that purpose). But the implications of this

interesting phenomenon in terms of the porosity and albedo of the

specimens are not very clear; they could, however, be studied

experimentally and/or analytically. It would be of interest to

look for evidence of reddening at large phase angles among our

natural specimens by measuring the change of the brightness of

their surface at disnrete.wavelen_ths. _aboratory data on the

wavelength dependence of the baekscattering of surfaces _my be of
engineering interest as well as an additional clue in

model matching experiments when the lunar counterpart of this

data becomes available.

Contrived models of the "Thumb Tacks" variety promise a new

departure in lunar surface research. Such models help the investi-

gator to think of a particular aspect of the lunar data in terms

of relevant properties rather than in terms of natural specimens

which often confuse the issue and lead to unnecessary disagree -_

ments among the i_terpreters of these data. In the field of

photometry, the preliminary models we have developed appear to promise

further insight and quantitative data on the porosity, albedo

and relative roughness of the lunar surface.

Specifically, the following studies are recommended:

Measurements of brightness versus phase relationship at

discrete wavelengths ranging from far ultraviolet to near

infrared of natural specimens that passed the photometric

test under integrated light.

Measurements of brightness versus phase relationship

under integrated and spectral light of "suspended"

particulate models ranging in porosity from 50 to 99per

cent.

161



Measurements of brightness versus phase relationship

of other artificial but "stable" models under uniform

and nonuniform albedo conditions.

Derivation of empirical functions relating the photo-

metric and geometric properties of backscattering tri-

dimensional "surfaces" under uniform and nonuniform

albedo conditions.

Similar investigations of the polarimetric, near infrared,

thermal dielectric and other known properties of the moon

should be coordinated with photometric studies in an attempt to

verify and complement the limited amount of informationthat each

one of these clues is capable of contributing to our understanding

of the lunar surface.
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APPENDIX

ANALYTICAL INVESTIGATION OF THE PHOTOMETRY OF

by

H. B. Hallock

and

D. Lamberty

CuO- COVERED PRISMS
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PART I

ANALYSIS OF THE PRISMS WHEN SUN MOVES _ARALLEL TO PRISM RIDGES

Let:

The model and illuminations geometry is shown in Fig. A-I.

_f = photometric function of CuO
at viewing angle

on flat surface

_ photometric function of sample viewed
P

= phase angle

W = relative viewed area of surface S in Fig. A-I
n n

Assume:

collimated incident light

homogeneous surface

viewing from large distance

reflection curve from flat surface of CuO is symmetric

 f(0)l = l

secondary reflection is negligible.

From geometry of Fig. A-2:

! !

area of S I = area of S I or W I = W I

! !

area of S = area of S or W = W
n n n n

and

_f(e)l = _f(-e)I or _f(=)l = _f(_)l
c_ c_ e -e

NI2 NI2

CpCa) = 1 cf(_)l W2n+ I Cf(_)i W2n-i

n--i
-_ n=l e
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N/2

1 ,f(a) [

n=l

N/2
I

W2n + _

n--i
0

W2n- I

N

Z wn
n=l

0

N

= ,f [ w'n
n=l

0

N

I¢ (a) = kCf(a) l where k = constant = W = i
p _ n

n-i
e

PART II

A_NALYSIS ,OF THE PRISMS WHEN SUN MOVES PERPENDICULAR TO PRISM RIDGES

The elongated prisms are covered with copper oxide powder

screened through400 mesh screen. This material is known to have

an excellent "backscatter" resembling the lunar signature. Ex-

cept for possible irregularities in coverage of the geometric

forms due to gravitational effects, the essential signature type

is unchanged by sprinkling it on the geometric forms. However,

the prism surfaces are now of two opposite slopes corresponding

to two "viewing angles" for any one orientation of the whole base

structure.

As an example, one-prism and three-prism geometries with 45 °

vertex angles, as illustrated in Fig. A-3b and 3c, are analyzed

in Tables A-I and A-II in terms of the photometry of a CuO-covered

fiat plane as shown in Figs. A-3a and A-4. In the case of the

three-prism geometry, the analysis takes also into consideration

a secondary effect of noticeable proportion due to the shadowing

of the "trough" areas by the prisms at very oblique incidence
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(beyond 45°). Light incident from the direction toward the even
surface inclination will not strike the odd surfaces until an
angle of 45 ° incidence to base has been reached. Also beyond

45 ° the even surfaces with the exception of the end one (S 6)

are shadowed partly.

The reflection of light from one prism to an adjacent prism

face can be neglected since the reflectance is less than 10% and

the double reflection could not possibly account for 10% x 10%

or 1% of the total.

The geometries defined in Fig. 43 restrict the configurations

to one with an "edge factor3" in whic_ surfaces I and 6 are not

affected by adjacent structures beyond the base defined.

To analyze the whole structure, a single "45 ° viewing angle"

photometric curve is taken on copper oxide sprinkled on a flat.

This curve, shown in Fig. A-4, is then used to provide the basic

photometric values extracted in Table A-II, _f (photometric
function of the flat plate).

Since a circular field of view is involved_ a weighting

factor for the area of each surface viewed is calculated and

tabulated in Table A-II. Shadowing is treated as a per cent

figure_ shown in the tables as P (%). A product of _f and the

two factors mentioned for each surface can be summed over the en-

tire sturcture to yield an over-all photometric function _ (pho-
P

tometric function of prisms). Figures 45a and _ show a comparison

of the calculated _ and a measured _ for one and three prisms
P P

respectively. The analysis for the one-prism geometry is shown in

Table A-I. _ •
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Figure A-I. Three-Prism and Illumination Geometry for Sun Motion
Parallel to Prism Ridges
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!

To Sun Source To Photometer
I \

_ \ _ Viewing Plane

(a) Transverse Illumination

(Ref. Figures 45a to 45e and 48)

Area Viewed

J

s 1

Area ofS 1 = Area of S 2 _1

...Weight W is 1 for Both Surfaces "N]

(b) One-Prism Geometry (Ref. Figure 45a and Table A-l)

Area Weight

S 1 17 0.53

S2 28 0.88

S 3 32 1.0

4 32 1.0

S 5 28 0.88

S 6 17 0.53

Figure A-3.

Area Viewed

$6 +

Specimen

(c) Three-Prism Geometry

Prism and Illumination Geometry for Sun Motion

Perpendicular to the Ridges
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Table A-I.

ANALYSIS OF 0NE-PRISM GEOMETRY FOR SUN MOTION PERPENDICULAR TO RIDGE

Ref. Figures A-3a and 3c

SI

60 105 i 0

5o 95 1 o

4o 85 i i

30 75 i 1

2o 65 i 1

i0 55 i i

o 45 i i

Cf Prod. Prod. @ p

0 0 33.5 33.5

0 0 38.0 38.0

7.5 7.5 43.0 50.5

22.0 22.0 50.0 72.0

38.0 38.0 57.5 95.5

56.5 56.5 67.0 123.5

R

@p of sample curve at

S
2

I W P (_) @f

-15 i i 33.5

-5 i i 38.0

5 i i 43.0

15 1 i 5o.o

25 1 1 57.5

35 i l 67.0

45 1 i

= i0 o

of calculated curve at _ = i0 °
P

59

123.5

= o.48

R "¢p

16

i8

24

35

46

59

Note: Data Taken from Figure A-4 and Plotted

on Graph in Figure 45a
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6o

5o

4o

3o

2o

i0

Table A-II

ANALYSIS OF THREE-PRISM GEOMETRY FOR SUN MOTION PERPENDICULAR TO RIDGES

I

lO5

95

85

75

65

55

Ref. Figures A-3a and 3c

S I

W

.53

.53

.53

.53

.53

.53

P (%) Cf Prod.

0 0 0

0 0 0

too 7.5 4

i00 22.0 12

i00 38.0 20

i00 56.5 30

S2 + S4

I W

-15 1.88

-5 1.88

5 1.88

15 1.88

25 1.88

35 1.88

P (%)

73

92

I00

i00

i00

I00

Cf

33.5

38.0

43.0

5O.O

57.5

67.0

Prod.

46

66

81

94

lO8

]_26

E_

6o

5o

_o

3o

i2o

10

I

io5

95

85

75

65

55

R

s3 + s5

W P (_)

1.88 o

1.88 o

1.88 i00

1.88 I0O

1.88 loo

1.88 lOO

Cf Prod.

0 0

0 0

7.5 14

22.0 41

1 38.0 71

56.5 106

I s6

I W P (_)

l[ -15 .53 i00

-5 .53

5 .53

15 .53

25 •53

35 •53

Cp of sample curve at _ = i0°

¢ of calculated curve ata = i0°
P

59

297

Cf

33.5

i00 38.0

i00 43.0

I00 50.0

ioo • 57.5

i00 67.0

Prod.

18

eo

e3

26

30

35

Cp R. Cp

64 12.5

86 17.o

12e 24.o

173 34.5

e29 45.5

297 59.0

= •199

Note: Data Taken from Figure A-4 and Plottedi
on Graph in Figure 45c
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